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a b s t r a c t

PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural
language to continuous vectors which encode the semantic/syntactic regularities between the words.
PSDVec implements a word embedding learning method based on a weighted low-rank positive semi-
definite approximation. To scale up the learning process, we implement a blockwise online learning
algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word
embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the
whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing
(NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word
embedding tools. PSDVec provides a new option for NLP practitioners.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Word embedding has gained popularity as an important un-
supervised Natural Language Processing (NLP) technique in recent
years. The task of word embedding is to derive a set of vectors in a
Euclidean space corresponding to words which best fit certain
statistics derived from a corpus. These vectors, commonly referred
to as the embeddings, capture the semantic/syntactic regularities
between the words. Word embeddings can supersede the tradi-
tional one-hot encoding of words as the input of an NLP learning
system, and can often significantly improve the performance of
the system.

There are two lines of word embedding methods. The first line
is neural word embedding models, which use softmax regression
to fit bigram probabilities and are optimized with Stochastic
Gradient Descent (SGD). One of the best known tools is word2vec1

[10]. The second line is low-rank matrix factorization (MF)-based
methods, which aim to reconstruct certain bigram statistics matrix
extracted from a corpus, by the product of two low rank factor
matrices. Representative methods/toolboxes include Hyperwords2

[4,5], GloVe3 [11], Singular4 [14], and Sparse5 [2]. All these
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methods use two different sets of embeddings for words and their
context words, respectively. SVD based optimization procedures
are used to yield two singular matrices. Only the left singular
matrix is used as the embeddings of words. However, SVD oper-
ates on ⊤G G , which incurs information loss in G , and may not
correctly capture the signed correlations between words. An em-
pirical comparison of popular methods is presented in [5].

The toolbox presented in this paper is an implementation of
our previous work [8]. It is a new MF-based method, but is based
on eigendecomposition instead. This toolbox is based on [8],
where we establish a Bayesian generative model of word embed-
ding, derive a weighted low-rank positive semidefinite approx-
imation problem to the Pointwise Mutual Information (PMI) ma-
trix, and finally solve it using eigendecomposition. Eigende-
composition avoids the information loss in based methods, and
the yielded embeddings are of higher quality than SVD-based
methods. However eigendecomposition is known to be difficult to
scale up. To make our method scalable to large vocabularies, we
exploit the sparsity pattern of the weight matrix and implement a
divide-and-conquer approximate solver to find the embeddings
incrementally.

Our toolbox is named Positive-Semidefinite Vectors (PSDVec). It
offers the following advantages over other word embedding tools:

1. The incremental solver in PSDVec has a time complexity
( )O cd n2 and space complexity ( )O cd , where n is the number of

words in a vocabulary, d is the specified dimensionality of em-
beddings, and ⪡c n is the number of specified core words. Note
that the space complexity does not increase with the
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vocabulary. In contrast, other MF-based solvers, including the
core embedding generation are of ( )O n3 time complexity and

( )O n2 space complexity.6 Hence asymptotically, PSDVec takes
about O(cd2/n2) of the time and O(cd/n2) of the space of other
MF-based solvers.

2. Given the embeddings of an original vocabulary, PSDVec is able
to learn the embeddings of new words incrementally. To our
best knowledge, none of other word embedding tools provide
this functionality; instead, new words have to be learned to-
gether with old words in batch mode. A common situation is
that we have a huge general corpus such as English Wikipedia,
and also have a small domain-specific corpus, such as the NIPS
dataset. In the general corpus, specific terms may appear rarely.
It would be desirable to train the embeddings of a general vo-
cabulary on the general corpus, and then incrementally learn
words that are unique in the domain-specific corpus. Then this
feature of incremental learning could come into play.

3. On word similarity/analogy benchmark sets and common Nat-
ural Language Processing (NLP) tasks, PSDVec produces em-
beddings that has the best average performance among popular
word embedding tools.

4. PSDVec is established as a Bayesian generative model [8]. The
probabilistic modeling endows PSDVec clear probabilistic inter-
pretation, and the modular structure of the generative model is
easy to customize and extend in a principled manner. For
example, global factors like topics can be naturally incorporated,
resulting in a hybrid model [9] of word embedding and Latent
Dirichlet Allocation [1]. For such extensions, PSDVec would
serve as a good prototype. While in other methods, the regres-
sion objectives are usually heuristic, and other factors are
difficult to be incorporated.
2. Problem and solution

PSDVec implements a low-rank MF-based word embedding

method. This method aims to fit the ( ) =
( )

( ) ( )s sPMI , logi j
P s s

P s P s

,i j

i j
using

⊤v vs sj i, where ( )P si and ( )P s s,i j are the empirical unigram and bi-
gram probabilities, respectively, and vsi is the embedding of si. The
regression residuals ( ) − ⊤v vs sPMI ,i j s sj i are penalized by a mono-

tonic transformation (·)f of ( )P s s,i j , which implies that, for more
frequent (therefore more important) bigram s s,i j, we expect it is
better fitted. The optimization objective in the matrix form is

∑ μ= || − || + ‖ ‖
( )

⁎ ⊤
( )

=

V G V V varg min ,
1V

Hf
i

W

i s
1

2
2

i

where G is the PMI matrix, V is the embedding matrix, H is the
bigram probabilities matrix, ||·|| ( )Hf is the ( )−Hf weighted Frobe-
nius-norm, and μi are the Tikhonov regularization coefficients. The
purpose of the Tikhonov regularization is to penalize overlong
embeddings. The overlength of embeddings is a sign of overfitting
the corpus. Our experiments showed that, with such regulariza-
tion, the yielded embeddings perform better on all tasks.

Eq. (1) is to find a weighted low-rank positive semidefinite
approximation to G . Prior to computing G , the bigram probabilities
{ ( )}P s s,i j are smoothed using Jelinek–Mercer Smoothing.

A Block Coordinate Descent (BCD) algorithm [13] is used to
approach (1), which requires eigendecomposition of G . The ei-
gendecomposition requires ( )O n3 time and ( )O n2 space, which is
6 Word2vec adopts an efficient SGD sampling algorithm, whose time com-
plexity is only O(kL), and space complexity O(n), where L is the number of word
occurrences in the input corpus, and k is the number of negative sampling words,
typically in the range 5∼20.
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difficult to scale up. As a remedy, we implement an approximate
solution that learns embeddings incrementally. The incremental
learning proceeds as follows:

1. Partition the vocabulary S into K consecutive groups …S S, , k1 .
Take K¼3 as an example. S1 consists of the most frequent
words, referred to as the core words, and the remaining words
are noncore words.

2. Accordingly partition G into K�K blocks as

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

G G G
G G G
G G G

.
11 12 13

21 22 23

31 32 33

Partition ( )Hf in the same way. ( )G Hf,11 11 correspond to core–
core bigrams (consisting of two core words). Partition V into

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⏟ ⏟⏟

V V V .
S S S

1 2 3

1 2 3

3. For core words, set μ = 0i , and solve || − ||⊤
( )G V Varg minV Hf11 1 1 1

using eigendecomposition, obtaining core embeddings
⁎

V1 .
4. Set =

⁎
V V1 1 , and find

⁎
V2 that minimizes the total penalty of the 12th

and 21th blocks (the 22th block is ignored due to its high sparsity):

∑ μ‖ − ‖ + ‖ − ‖ + ‖ ‖⊤
( )

⊤
( )

∈

G V V G V V varg min .
V

H H
S

f f
s

i s12 1 2
2

21 2 1
2 2

i

i
2

12 21
2

The columns in V2 are independent, thus for each vsi, it is a separate
weighted ridge regression problem, which has a closed-form
solution.

5. For any other set of noncore words Sk, find
⁎

Vk that minimizes
the total penalty of the 1kth and k1th blocks, ignoring all other
kjth and jkth blocks.

6. Combine all subsets of embeddings to form
⁎

V . Here
= ( )

⁎ ⁎ ⁎ ⁎
V V V V, ,1 2 3 .
3. Software architecture and functionalities

Our toolbox consists of 4 Python/Perl scripts: extractwiki.
py, gramcount.pl, factorize.py and evaluate.py. Fig. 1
presents the overall architecture.

1. extractwiki.py first receives a Wikipedia snapshot as input;
it then removes non-textual elements, non-English words and
Fig. 1. Toolbox architecture.
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Table 1
Performance of each method across 9 tasks.

Method Similarity tasks Analogy tasks NLP tasks Avg.

WS WR MEN Turk SL TFL RG Google MSR NER Chunk

word2vec 74.1 54.8 73.2 68.0 37.4 85.0 81.1 72.3 63.0 84.8 94.8 71.7
PPMI 73.5 67.8 71.7 65.9 30.8 70.0 70.8 52.4 21.7 N.A.a N.A.a 58.3
SVD 69.2 60.2 70.7 49.1 28.1 57.5 71.8 24.0 11.3 81.2 94.1 56.1
GloVe 75.9 63.0 75.6 64.1 36.2 87.5 77.0 54.4 43.5 84.5 94.6 68.8
Singular 76.3 68.4 74.7 58.1 34.5 78.8 80.7 50.8 39.9 83.8 94.8 67.3
Sparse 74.8 56.5 74.2 67.6 38.4 88.8 81.6 71.6 61.9 78.8 94.9 71.7
PSDVec 79.2 67.9 76.4 67.6 39.8 87.5 83.5 62.3 50.7 84.7 94.7 72.2
PSD-unregb 78.6 66.3 75.3 67.5 37.2 85.0 79.9 59.8 46.8 84.7 94.5 70.5

a These two experiments are impractical for “PPMI”, as they use embeddings as features, and the dimensionality of a PPMI embedding equals the size of the vocabulary,
which is over 40,000.

b “PSDVec” with all Tikhonov regularization coefficients μ = 0i , i.e., unregularized.
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punctuation; after converting all letters to lowercase, it finally
produces a clean stream of English words.

2. gramcount.pl counts the frequencies of either unigrams or
bigrams in a word stream, and saves them into a file. In the
unigram mode (-m1), unigrams that appear less than certain
frequency threshold are discarded. In the bigram mode (-m2),
each pair of words in a text window (whose size is specified by
-n) forms a bigram. Bigrams starting with the same leading
word are grouped together in a row, corresponding to a row in
matrices H and G .

3. factorize.py is the core module that learns embeddings
from a bigram frequency file generated by gramcount.pl. A
user chooses to split the vocabulary into a set of core words and
a few sets of noncore words. factorize.py can: (1) in func-
tion we_factorize_EM(), do BCD on the PMI submatrix of
core-core bigrams, yielding core embeddings; (2) given the core
embeddings obtained in (1), in block_factorize(), do a
weighted ridge regression w.r.t. noncore embeddings to fit the
PMI submatrices of core-noncore bigrams. The Tikhonov reg-
ularization coefficient μi for a whole noncore block can be
specified by -t. A good rule-of-thumb for setting μi is to in-
crease μi as the word frequencies decrease, i.e., give more
penalty to rarer words, since the corpus contains insufficient
information of them.

4. evaluate.py evaluates a given set of embeddings on 7 commonly
used testsets, including 5 similarity tasks and 2 analogy tasks.
Table 2
Training time (minutes) of each method across 2 training corpora.

Method Language Wikipedia RCV1 Ratio

word2vec C 249 15 17
PPMI Python 2196 57 39
SVD Python 2282 58 39
GloVe C 229 6 38
Singular Cþþ 183 26 7
Sparse Cþþ 1548 1 1548
PSDVec Python 463 34 14
PSD-corea Python 137 31 4

a This is the time of generating the core embeddings only, and is not com-
parable to other methods.
4. Implementation and empirical results

4.1. Implementation details

The Python scripts use Numpy for the matrix computation.
Numpy automatically parallelizes the computation to fully utilize a
multi-core machine.

The Perl script gramcount.pl implements an embedded
Cþþ engine to speed up the processing with a smaller memory
footprint.

4.2. Empirical results

Our competitors include: word2vec, PPMI and SVD in Hyper-
words, GloVe, Singular and Sparse. In addition, to show the effect
of Tikhonov regularization on “PSDVec”, evaluations were done on
an unregularized PSDVec (by passing “-t0” to factorize.py),
denoted as PSD-unreg. All methods were trained on an 12-core
Xeon 3.6 GHz PC with 48 GB of RAM.

We evaluated all methods on two types of testsets. The first
type of testsets are shipped with our toolkit, consisting of 7 word
Please cite this article as: S. Li, et al., PSDVec: A toolbox for incremen
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similarity tasks and 2 word analogy tasks (Luong's Rare Words is
excluded due to many rare words contained). Seven out of the
9 testsets are used in [5]. The hyperparameter settings of other
methods and evaluation criteria are detailed in [5,14,2]. The other
2 tasks are TOEFL Synonym Questions (TFL) [3] and Rubenstein &
Goodenough (RG) dataset [12]. For these tasks, all 7 methods were
trained on the April 2015 English Wikipedia. All embeddings ex-
cept “Sparse” were 500 dimensional. “Sparse” needs more di-
mensionality to cater for vector sparsity, so its dimensionality was
set to 2500. It used the embeddings of word2vec as the input. In
analogy tasks Google and MSR, embeddings were evaluated using
3CosMul [6]. The embedding set of PSDVec for these tasks con-
tained 180,000 words, which was trained using the blockwise
online learning procedure described in Section 5, based on 25,000
core words.

The second type of testsets are 2 practical NLP tasks for eval-
uating word embedding methods as used in [15], i.e., Named En-
tity Recognition (NER) and Noun Phrase Chunking (Chunk). Fol-
lowing settings in [15], the embeddings for NLP tasks were trained
on Reuters Corpus, Volume 1 [7], and the embedding dimension-
ality was set to 50 (“Sparse” had a dimensionality of 500). The
embedding set of PSDVec for these tasks contained 46,409 words,
based on 15,000 core words.

Table 1 above reports the performance of 7 methods on 11
tasks. The last column reports the average score. “PSDVec” per-
formed stably across the tasks, and achieved the best average
score. On the two analogy tasks, “word2vec” performed far better
than all other methods (except “Sparse”, as it was derived from
“word2vec”), the reason for which is still unclear. On NLP tasks,
most methods achieved close performance. “PSDVec” out-
performed “PSD-unreg” on all tasks.

To compare the efficiency of each method, we presented the
training time of different methods across 2 training corpora in
Table 2. Note that the ratio of running time is determined by a few
factors together: the ratio of vocabulary sizes (180,000/
tal and scalable word embedding, Neurocomputing (2016), http:
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Table 3
Efficiency of incremental learning of PSDVec.

Method Wikipedia ( = = )c d25, 000, 500 RCV1 ( = = )c d15, 000, 50

Words Time (min) RAM (G) Words/min Speedup Words Time (min) RAM (G) Words/min Speedup

PSD-noncore 155,000 326 22 475 2.6 31,409 3 8 10,000 20
PSD-core 25,000 137 44 182 / 15,000 31 15 500 /
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46,409E4), the ratio of vector lengths (500/50¼10), the language
efficiency, and the algorithm efficiency. We were most interested
in the algorithm efficiency. To reduce the effect of different lan-
guage efficiency of different methods, we took the ratio of the two
training time to measure the scalability of each algorithm.

From Table 2, we can see that “PSDVec” exhibited a competitive
absolute speed, considering the inefficiency of Python relative to
C/Cþþ . The scalability of “PSDVec” ranked the second best, worse
than “Singular” and better than “word2vec”.

The reason that “PPMI” and “SVD” (based on “PPMI”) were so
slow is that “hyperwords” employs an external sorting command,
which is extremely slow on large files. The reason for the poor
scalability of “Sparse” is unknown.

Table 3 shows the time and space efficiency of the incremental
learning (“PSD-noncore” for noncore words) and MF-based learn-
ing (“PSD-core” for core words) on two corpora. The memory is
halved using incremental learning, and is constant as the voca-
bulary size increases. As stated above, the per-word time com-
plexity of “PSD-noncore” is ( )O c d2.4 . The embedding dimensionality
on Wikipedia is 10 times of that on RCV1, thus the speedup on the
Wikipedia corpus is only around 1/8 of that on the RCV1 corpus.
5. Illustrative example: training on English Wikipedia

In this example, we train embeddings on the English Wikipedia
snapshot in April 2015. The training procedure goes as follows:

1. Use extractwiki.py to cleanse a Wikipedia snapshot, and gen-
erate cleanwiki.txt, which is a stream of 2.1 billion words.

2. Use gramcount.pl with cleanwiki.txt as input, to generate
top1grams-wiki.txt.

3. Use gramcount.pl with top1grams-wiki.txt and cleanwiki.txt as
input, to generate top2grams-wiki.txt.

4. Use factorize.py with top2grams-wiki.txt as input, to obtain
25,000 core embeddings, saved into 25000-500-EM.vec.

5. Use factorize.py with top2grams-wiki.txt and 25000-500-EM.
vec as input, and Tikhonov regularization coefficient set to 2, to
obtain 55,000 noncore embeddings. The word vectors of totally
80,000 words is saved into 25000-80000-500-BLKEM.vec.

6. Repeat Step 5 twice with Tikhonov regularization coefficient set to
4 and 8, respectively, to obtain extra 50,000�2 noncore embed-
dings. The word vectors are saved into 25000-130000-500-
BLKEM.vec and 25000-180000-500-BLKEM.vec, respectively.

7. Use evaluate.py to test 25000-180000-500-BLKEM.vec.
6. Conclusions

We have developed a Python/Perl toolkit PSDVec for learning
word embeddings from a corpus. This open-source cross-platform
software is easy to use, easy to extend, scales up to large voca-
bularies, and can learn new words incrementally without re-
training the whole vocabulary. The produced embeddings
Please cite this article as: S. Li, et al., PSDVec: A toolbox for incremen
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performed stably on various test tasks, and achieved the best
average score among 7 state-of-the-art methods.
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