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Abstract     

Hierarchical models have been extensively 
studied in various domains. However, existing 
models assume fixed model structures or 
incorporate structural uncertainty generatively. 
In this paper, we propose Dynamic Hierarchical 
Markov Random Fields (DHMRFs) to 
incorporate structural uncertainty in a 
discriminative manner. DHMRFs consist of two 
parts – structure model and class label model. 
Both are defined as exponential family 
distributions. Conditioned on observations, 
DHMRFs relax the independence assumption as 
made in directed models. As exact inference is 
intractable, a variational method is developed to 
learn parameters and to find the MAP model 
structure and label assignment. We apply the 
model to a real-world web data extraction task, 
which automatically extracts product items for 
sale on the Web. The results show promise. 

1.  Introduction 

The Web is a vast and rapidly growing repository of 
information. There are various kinds of objects, such as 
products, people, and conferences, embedded in 
webpages. Our recent work on web data extraction (Zhu 
et al., 2006) introduces an effective template-independent 
method which makes it possible to use a single extraction 
model to automatically extract information from all 
webpages containing the same type of objects. Because of 
the heterogeneity of webpages, template-independent web 
object extraction is challenging. Hierarchical models have 
great advantages in the reduction of extraction error by 
integrating multi-scale web data extraction tasks (i.e. data 
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record detection and attribute labeling), incorporating 
long distance dependencies, and fusing multi-scale 
features (Zhu et al., 2006). However, one problem with 
this method is that the model structure is fixed by pre-
constructed vision-trees (here, a vision-tree is a modified 
HTML tag tree which can represent the visual layout of a 
webpage better). The fixed structures are not most 
appropriate for web data extraction. This is because, 
unaware of semantic labels, it cannot resolve all 
ambiguities when constructing the model structures (i.e. 
vision-trees). Some closely related nodes may be 
separated significantly and only connected through a 
remote ancestor node on the tree. Due to the model’s local 
Markov assumption, it will lose some useful dependencies 
and result in low accuracy. An extreme case is that the 
attributes of different objects are intertwined. Fixed 
hierarchical models are incapable of re-organizing them 
correctly. This problem has been known as blocky artifact 
issue in image processing (Irving et al., 1997). 

Thus, effective web data extraction models should have 
the capability to adapt their structures during the inference 
process. In this paper, we propose an undirected graphical 
model named Dynamic Hierarchical Markov Random 
Fields (DHMRFs) to achieve the above goal. DHMRFs 
consist of two parts – structure model and class label 
model. Both parts are defined as exponential family 
distributions. Compared to the directed Dynamic Trees 
(Williams & Adams, 1999) which have been proposed in 
image processing to address the blocky artifact issue, our 
model representation is compact and parameter sharing is 
easy. This is because conditional probability tables (CPTs) 
are used in Dynamic Trees to represent transition from 
parent nodes to child nodes. If different CPTs are used for 
different nodes, it will easily lead to over-
parameterization. Thus, layer-wise CPT sharing is always 
adopted. But in the scenario of web data, sharing CPTs 
can be difficult because the hierarchical structures are not 
as regular as the dyadic or quad trees in image processing. 
Here, different pages can have quite different depths, and 
nodes from different pages at the same depth can have 
very diverse semantics. In contrast, DHMRFs define 
probability distributions via a set of feature functions and 
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Figure 1. The observations X (left) can be in a hierarchy or other structures, and the right is a DHMRF model denoted by S  and Y . 
Nodes are arranged in a layered structure, and vertical edges are selected by posterior probabilities ( )s | xp . Dotted lines represent the 
2D neighborhood system between nodes at the same layer. In both graphs empty nodes are inner nodes and filled nodes are leaf nodes. 

weights. These feature functions depend much more on 
observations and their labels than on the depths of the 
nodes. Thus, the undirected model is more suitable for 
diverse web data. Furthermore, as conditional models 
(Lafferty et al., 2001), DHMRFs relax the independence 
assumption as made in directed models. Finally, instead 
of trees in which only parent-child dependencies are 
assumed, DHMRFs take the triple-wise interactions 
among neighboring sibling variables and their parent into 
consideration. These triple-wise dependencies provide 
more flexibility in encoding useful features. 

In undirected dynamic models, parameter estimation is 
generally intractable, especially when there are hidden 
variables – both structures and inner variables are hidden 
in our study. In this paper, a variational algorithm is 
developed within the paradigm of contrastive divergence 
mean field learning (Welling & Hinton, 2001) to do 
parameter estimation and to find the maximum a posterior 
assignment of labels and the most likely model structures. 
The performance of our model is demonstrated on a web 
data extraction task – production information extraction. 
The results show that our model can achieve high 
extraction accuracy without tedious manual labeling of 
inner nodes which is required in the learning of fixed- 
structured models (Zhu et al., 2006). Note that although 
we have motivated and evaluated our model only in the 
field of web data extraction, it could also be applied to 
other fields since the model itself is general. We leave 
further examinations as future work. 

The rest of the paper is organized as follows. In the next 
section, we discuss some related hierarchical models. 
Section 3 describes Dynamic Hierarchical Markov 
Random Fields, including an approximate inference 
algorithm. Section 4 provides our empirical evaluation on 
web data extraction. Section 5 brings this paper to a 
conclusion, and finally, we give our acknowledgements. 

2.  Related Work 

Multi-scale or hierarchical statistical modeling has shown 
great promise in image labeling (Kato et al., 1993; Li et 
al., 2002; He et al., 2004; Kumar & Hebert, 2005), 
information extraction (Zhu et al., 2006), and human 
activity recognition (Liao et al., 2005). Based on whether 
data are observed at multiple scales, two scenarios exist in 

which hierarchical modeling is appropriate. First, data are 
observed at different spatial scales and a model is used to 
integrate information from the different scales. Second, 
data are observed only at the finest scale and a model is 
used to induce a particular process at that scale. The 
introduced intermediate processes or variables can 
incorporate more complex dependencies to help the target 
labeling. Another merit of hierarchical models is that they 
admit more efficient inference algorithms compared to 
flat models (Willsky, 2002). 

Traditional hierarchical models always assume that model 
structures are fixed or can be constructed via some 
deterministic methods such as sub-sampling of images (Li 
et al., 2002), segmentation of webpages (Zhu et al., 2006), 
and the minimum spanning tree algorithm (Quattoni et al., 
2004) with a proper definition of distance. However, in 
many applications this assumption may not hold. For 
example, fixed models in image processing often lead to 
the blocky artifact issue, and similar problems arise in 
web data extraction due to the diversity of web data. To 
address this problem some enhanced models have been 
proposed such as the overlapping tree approach (Ivring et 
al., 1997). Superior performance is achieved with the 
improvement of the descriptive component of the model. 
However, ultimate solutions should deal with the source 
of the blockiness – fixed model structures. Based on this 
intuition, Dynamic Trees (Williams et al., 1999) have 
been proposed, which also consist of two parts – model of 
structures and model of class labels. However, the key 
difference between DHMRFs and Dynamic Trees is that 
DHMRFs are defined as exponential family distributions 
and thus admit several advantages as in the introduction. 

Incorporation of evidence at various scales is examined in 
a generative manner in (Todorovic & Nechyba, 2005). 
But our model is discriminative and it can relax the 
independence assumption among evidence as made in 
generative models. This is the key idea underlying 
Conditional Random Fields (Lafferty et al., 2001) which 
have shown great promise in information extraction 
(Culotta, et al., 2006; Zhu et al., 2006). 

Modeling structural uncertainty has also been studied in 
relational learning (Getoor et al., 2001). Here, we focus 
on modeling the structural uncertainty within 
independently and identically distributed (IID) samples. 

X ,S Y

LL
LL
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Our model is different from Dynamic CRFs (Sutton et al., 
2004) which are dynamic in terms of time, that is, they 
have repetitive model structure and parameters over time, 
and the structure at each time slice is fixed. 

3.  Dynamic Hierarchical Markov Random Fields 

In this section, we present the detailed description of 
Dynamic Hierarchical Markov Random Fields. An 
approximate inference algorithm is developed to do 
parameter estimation and to find the maximum a posterior 
model structure and label assignment. 

3.1  Model Description 

Suppose we are given a set of N  vertices, and each vertex 
is associated with a set of observations. Also suppose the 
vertices are arranged in a layered manner. Then, 
hierarchical statistical modeling is a task to construct an 
appropriate hierarchical model structure and carry out 
inference about the labels of given observations. 
Determining the number of layers and the number of 
nodes at each layer is problem specific. We will give an 
example of web data extraction in the experiment section. 
Let S  be random variables over hierarchical structures, 
X  be variables over the observations to be labeled, and 
Y be variables over the corresponding labels. Each 
component 

i
Y  is assumed to take values from a finite 

discrete label space iY . Here, capitalized characters denote 
random variables and corresponding lower cases are their 
instances or configurations, e.g. y  is a label assignment 
and i i∈y Y  is one component label. Given observations 
x , Dynamic Hierarchical Markov Random Fields define 
a conditional probability distribution ( )s, y | xp  of 
structure s  and label assignment y . An example is shown 
in Figure 1, where the left graph is observations and the 
right is an instance of the dynamic model. Applying the 
chain rule, we get ( ) ( ) ( )s, y | x s | x y | s,xp p p= . Thus, the 
model consists of two parts – structure model ( )s | xp  and 
class label model ( )y | s,xp . We explain them as follows: 

Structure Model: Let ils  be an indicator variable to 
denote the connectivity between node i  and another node 
l  which is at the direct above level. Here, leaf nodes can 
be at any level except the root node that is taken as a 
default node for an entire page. For leaf nodes, no child is 
allowed. We call the parent-child connection vertical 
connection. To retain the computational advantage of 
tree-structured models, each node is allowed to have only 
one parent in a particular structure s . To consider the 
dependencies between neighboring nodes descended from 
a common parent, horizontal connection (i.e. connection 
between nodes at the same level) is incorporated in S . 
Let ijn  be an indicator variable to denote whether node i  
and node j  are adjacent to each other. Here, we assume 
that the variables ijn  are independent of ils  and can be 
determined using some spatial ordering method. This 
assumption holds in applications such as web data 
extraction and image processing. As position information 
is encoded in each node, deterministic spatial ordering 

can decide the neighborhood system among a set of nodes. 
In theory, the horizontal neighborhood system can be 
arbitrary. We consider the 2D cases (Zhu et al., 2005), 
that is, each node is horizontally connected to all the 
nearest surrounding nodes in a 2D plane. 

Conditioned on observations, the probability distribution 
of structure model is an exponential family distribution,  

( ) { }
1

1
s | x exp ( , , ,x) ,

(x) k il jl ij k
k ijl

p s s n g i j l
Z

µ= ∑ ∑  

where a triple ( ), ,i j l  denotes a particular position in the 
dynamic model. A position can be a time interval in time 
series or a region of space in random fields. Here, i  and 
j  are two nodes at the same layer and l  is a node at the 

direct above layer. ( ), , ,xkg i j l  are feature functions 
defined on the three nodes at position ( ), ,i j l , and kµ  are 
their weights. ( )1 xZ  is a normalization factor and 
depends on observations. 

Class Label Model: A sample s  from the structure model 
defines a hierarchical Conditional Random Fields (CRFs) 
(Lafferty et al., 2001). Let iα

y  be an indicator variable to 
denote the variable iY  taking the class label y .Then, the 
conditional probability of a label assignment y  is, 

( ) { }
2

1
y | s,x exp ( , , ,x) ,

(s,x)
ji l

k il jl ij i j l k i j l
k ijl

p s s n f
Z

λ α α α= ∑ ∑
yy y

y y y

 
where ( ), , , xk i j lf y y y  are feature functions defined on the 
labels iy , jy , and ly  at position ( ), ,i j l , and kλ  are their 
weights; ( )2 s,xZ  is a normalization factor and depends 
on both observations and the given model structure. 

Although conditional models take observations as global 
conditions, when defining feature functions they need to 
know the “focused observations” at a particular position. 
For example, in linear-chain CRFs (Lafferty et al., 2001) 
the observation at time t is among the focused 
observations when defining feature functions related to 
label ty . In general, let t  be a position and x t  be the set 
of focused observations at that position. The mapping 
function : x ttζ a  defines the focused observations for 
each position. In generative models like (Todorovic & 
Nechyba, 2005), the mapping function is defined to 
determine the observations generated by the states at a 
particular position. Moreover, an additional constraint 

,x xt st s∀ ≠ ∩ = Φ  is also set due to their independence 
assumption that observations at different positions are 
conditionally independent given the states at those 
positions. In conditional models, however, there is no 
such constraint. The mapping function can be 
deterministic or stochastic. We assume it to be 
deterministic in this paper. Now, all feature functions take 
an additional argument ζ , that is, the feature functions 
are ( ), , ,x,kg i j l ζ  and ( ), , , x,k i j lf ζy y y . 

Now, the joint distribution is also an exponential one,  

( )

1 2

s,y | x
( , , ,x, )

1
      = exp .

(x) (s,x) ( , , ,x, )ji l

k il jl ij k
k ijl

k il jl ij i j l k i j l
k ijl

p
s s n g i j l

Z Z s s n f

µ ζ

λ α α α ζ

+ 
 
 
 
 

∑ ∑

∑ ∑
yy y

y y y
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In the sequel, we will use ( ) ( ) ( )1 2x x s,xZ Z Z=  to denote 
the overall normalization factor. 

3.2  Parameter Estimation and Labeling 

Let { }
1 21 2 1 2, , , ; , , ,K Kµ µ µ λ λ λΘ = L L  denote the whole set 

of the model’s parameters. Given a set of training data 
{ }

1
x ,y

Ki i
e i

D
=

= < > , where x i  is a sample and yi
e  are 

observed labels. We consider the general case with both 
hidden hierarchical structure s  and hidden labels yh . For 
example, in web data extraction only the labels of leaf 
nodes are observable and both the hierarchical structures 
and the labels of inner nodes are hidden. So the log-
likelihood of the data is incomplete, 

( ) ( ) ( )
1: 1: s,y

log y | x log s,y ,y | x .
h

i i i i
e h e

i K i K

L p p
= =

 
Θ = =   

 
∑ ∑ ∑  

This function does not have a closed form solution 
because of the marginalization taking place within 
logarithm. In the following, we derive an upper bound of 
the negative log-likelihood. Then, contrastive divergence 
learning (Hinton, 2002) is applied as an approximation. 

Let ( )s, y | y ,xh eq  be an approximation of the distribution 
( )s, y | y ,xh ep . With a little abuse of notations, we will use 
( )s, yhq  to denote ( )s, y | y ,xh eq . We also ignore the 

summation operator in the log-likelihood during the 
following derivations as there is no essential difference 
between one sample and a set of independently and 
identically distributed (IID) samples. The optimal 
approximation is the distribution that has the minimum 
Kullback-Leibler divergence between ( )s, yhq  and 

( )s, y | y ,xh ep . The KL divergence is defined as 

( ) ( )
( )

( )s,y

s,y
|| s, y log

s,y | y ,x
h

h
h

h e

q
KL q p q

p
=∑ . 

Take ( ) ( ) ( )s, y | y ,x s,y ,y | x / y | xh e h e ep p p=  into the above 
equation and use the non-negativity of KL divergence, we 
can easily derive an upper bound of the negative log-
likelihood ( ) ( )log y | xeL p− Θ = − , that is,  

( ) ( ) ( ) ( ) ( )
s,y

s,y log s,y log s,y ,y | x
h

h h h eq q p LΘ = − ≥ − Θ  ∑L . 

By analogy with statistical physics, the upper bound, 
which is actually a KL divergence, can be expressed as 
the difference of two free energies: ( ) 0F F

∞
Θ = −L , 

where the first term is the free energy when we use data 
distribution with observable labels clamped to their values, 
and the second ( )log xF Z

∞
= −  is the free energy when we 

use model distribution with all variables free. 

Now, the problem is to optimize the upper bound. The 
derivatives of ( )ΘL  with respect to kλ  are, 

( )
( )

( )

( ) ( )
( )

( ) ( )
( )

s,y

s,y s,y

s,y s,y

log s,y ,y | x  

, , ,x,

, , ,x,

                                       

h

ji l

h h
i j l

ji l

h h
i j l

h e q
k k

il jl ij i j l k i j lq q
ijl k

ij il jl i j l k i j lq q
ijl k

p

F
s s n f

F
n s s f

λ λ

α α α ζ
λ

α α α ζ
λ

∞

∞

∂ Θ ∂
= −

∂ ∂

∂
= − −

∂

∂
= − −

∂

∑ ∑

∑ ∑

L

yy y

y y y

yy y

y y y

y y y

y y y

                                                            (1), 

 

where .
p

is the expectation under the distribution p . 
The last equation holds because of the assumption that the 
neighborhood system between sibling nodes is determined 
independent of their parents. 

Similarly, the derivatives with respect to kµ  are, 

( )
( )

( )
s,y

, , ,x,                  (2).
h

ij il jl kq
ijlk k

F
n s s g i j l ζ

µ µ

∞
∂ Θ ∂

= − −
∂ ∂

∑
L

 

In (1) and (2), the derivatives of the equilibrium free 
energy F

∞
 are essentially intractable in the case of 

Dynamic Hierarchical Markov Random Fields. However, 
by viewing the equilibrium distribution as the distribution 
of a Markov chain at time t = ∞  starting with data 
distribution, Markov chain Monte Carlo (MCMC) method 
can be used to reconstruct an approximation distribution 

( )s, y ,yi h eq  within several steps. This is the basic idea of 
contrastive divergence learning (Hinton, 2002). Now, the 
upper bound is approximated by, 

( )

( ) ( )

0

0 0 || || ,APP
i i i

F F

F F KL q p KL q p CF

∞
Θ = −

≈ − = − �

L
 

where ( )0 s, yhq q=  is optimized with observable labels 
clamped to their values, and ( )s, y ,yi h eq  is optimized with 
all variables free starting with 0q . As shown in (Hinton, 
2002), APP

iCF , known as contrastive divergence, is non-
negative. Some analyses of contrastive divergence 
learning appear in (Yuille, 2004; Carreira-Perpinan & 
Hinton, 2005). In the sequel, we will set 1i = .  

Now, the derivatives of 1
APPCF  with respect to the 

model’s parameters are as in (1) and (2) but with the 
derivatives of  F

∞
 replaced by, 

( ) ( )
( )

1 1
s,y ,y s,y ,y

, , ,x,ji l

h e h e
i j l

ij il jl i j l k i j lq q
ijl

n s s fα α α ζ−∑ ∑ yy y

y y y

y y y , 

and 
( )

( )
1 s,y ,y

, , ,x,
h e

ij il jl kq
ijl

n s s g i j l ζ−∑  respectively. 

Generally, stochastic sampling is quite time demanding in 
constructing 1q . In contrast, the deterministic mean field 
variant (Welling & Hinton, 2001) is more efficient. The 
learning procedure consists of two phases – wake phase 
and sleep phase. Wake phase is to optimize 0q  and sleep 
phase is to optimize 1q . We address the wake phase first. 

Assume the variational distribution can be factorized as 
( ) ( ) ( )0 s, y s yh hq q q q= = , and we get, 

( ) ( ) ( )0 (s,y )
|| log (s,y ,y | x) (s) (y )  

                                                                                                (3),
h

h e hq
KL q p p H q H q= − − −

 

where ( ) log
p

H p p= −  is the entropy of distribution p . 
To efficiently optimize 0q , more assumptions need to be 
made about the family of distributions of ( )sq  and ( )yhq . 
Here, we adopt the naïve mean field approximation. The 
basic idea underlying mean field theory (Jordan et al., 
1999) is to make a distribution a factorized one by 
introducing additional independence assumptions. This 
factorized distribution leads to computational tractability.  

The simplest naïve mean field is to assume that interacted 
variables are independent and the joint distribution is a 
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product of single variable marginal probabilities. Let ilµ  
be the probability of node i  being connected to node l , 
and imy  be the probability of variable iY  being at state y . 
As we assume variables ijn are determined independent 
of ils , the mean field distributions1 are, 

( ) [ ]s ils

il
il

q µ= ∏  and ( )y
i

h i
i

q m
α

 =  ∏
y

y

y

. 

Substitute the above distributions into (3) and keep ( )yhq  
fixed, then we get 

( ) ( )
( )

( )( )0 s,y
|| log s,y ,y | x s

h
h e q

KL q p p H q c= − − + , 

where c  is a constant. Let the derivative over ilµ  equal 
zero, and we get ( )

( )y
log log s,y ,y | x

h
il il h e q

s p constµ = + . 
Thus, 
 

( )

( )31 2

1 2 3

( )

1 2 3( ) (y )

, , , x

exp
, , ,x,

                                                                                                 

h

k il jl ij kq s
k j

il

k il jl ij i j l kq s q
k j

s s n g i j l

s s n f

µ

µ
λ α α α ζ

 +
 

∝  
 
 

∑ ∑

∑ ∑ ∑ yy y

y y y

y y y

( )     4 .
 

Normalization will lead to the desired probabilities ilµ . 

Similarly, keep ( )sq  fixed and we get 

( ) ( )
( )

( )( )
'

0 s,y
|| log s,y ,y | x y ,

h
h e hq

KL q p p H q c= − − +  

where 'c  is another constant. Let the derivative over imy  
equal zero, and we get 
 

 
( )

( )

( )

1 2

1 2

1 2

1 2

1 2(s) (y )

1 2(s) (y )

1 2(s) (y )

, , ,x,

exp , , ,x,

, , ,x,

                                                 

h

h

h

ij il jl j l kq q

i k ij jl il j l kq q
k jl

jl ji li j l kq q

n s s f

m n s s f

n s s f

α α ζ

λ α α ζ

α α ζ

 
 
 

∝ + 
 

+ 
 

∑ ∑

y y

y yy

y y

y y

y y y

y y y

y y y

( )                                               5 .

 

 

Equations (4) and (5) are a set of coupled equations, also 
known as mean field equations. These equations are 
iteratively solved for a fixed point solution. Intuitively, 
parameters ilµ  are updated by expected contributions 
from possible parents and neighbors, and similar for imy . 
In (4) and (5), structure parameters ilµ depend on class 
label assignments, and imy depend on expected structure 
connectivity. Thus, model structure selection is integrated 
with label assignment during the inference. 

Now, we have presented a mean field approximation of 
the wake phase. To finish the sleep phase, the same mean 
field equations are enforced by coordinate descent 
alternating between observable variables eY and hidden 
variables S  and hY . When first optimizing (5) for eY , the 
initial distribution of hidden variables are set as the 
optimal distribution at the end of wake phase. Then, take 
the optimal distribution of the former step as initial 

————— 
1  Let sv  denote the joint variable of vertical connection ils  and sh  
denote the joint variable of horizontal connection ijn , then 

( ) ( ) ( ) ( )s s ,s s s | sv h v h vq q q q= = . Based on the assumption that sh  
is independent of sv , ( )s | sh vq  is an indicator function, and takes all 
the probability one if only if sh  is the allowed structure. 

distribution of eY  and optimize (4) and (5) to get an 
approximate distribution of hidden variables. For wake 
phase, initial distributions can be random and 
convergence is arrived. But for sleep phase, a few steps 
are required to guarantee the improvement of 1

APPCF . 

Thus, all the terms in (1), (2), (4), and (5) can be 
calculated. The whole parameter estimation algorithm is 
as follows. First apply (4) and (5) to iteratively compute 
the marginal probabilities of both wake and sleep phases, 
and 1

APPCF  and its derivatives with respect to model 
parameters are calculated. Then, gradient-based 
optimization algorithms are applied to update model 
parameters. Here, we use the limited memory quasi-
Newton method (Liu & Nocedal, 1989). The learning 
procedure is iterated until the relative change of 1

APPCF  is 
below some threshold. Although no guarantee exists that 
global optimization will be achieved, empirical studies 
show that this algorithm performs well. 

As for labeling, when a testing example comes in, 
equations (4) and (5) are iteratively solved with all 
variables hidden for a fixed point solution. At the end of 
convergence, the maximum a posterior model structure 
can be constructed from the probabilities ilµ , and the 
most likely label assignments can be found from the 
marginal probabilities imy . 

4.  Experiments 

In this section, we evaluate DHMRFs on a real-world web 
data extraction task – production information extraction. 
We compare our model with Hierarchical Conditional 
Random Fields (HCRFs) (Zhu et al., 2006), Dynamic 
Trees (Williams et al., 1999), and fixed tree models. The 
results demonstrate the merits of our model. Empirical 
studies about the inference algorithm are also presented. 

4.1  Datasets and Methods 

Web data extraction is an information extraction (IE) task 
that identifies information of interest from webpages, and 
production information extraction is a web data extraction 
task that identifies product items for sale on the web. For 
each product item, four attributes – Name, Image, Price, 
and Description are extracted in our experiments. The 
difference of web data extraction from traditional IE is 
that various types of structural dependencies between the 
HTML elements exist, e.g. the HTML tag tree is itself 
hierarchical. Extending statistical models to handle these 
structural dependencies has received great attention of 
late. In this paper, we address the limitations of the fixed-
structured hierarchical model (Zhu et al., 2006). To 
compare with that fixed-structured hierarchical model, we 
use the same datasets as (Zhu et al., 2006). The datasets 
consist of both list and detail pages. A list page contains 
several structured data records while a detail page 
contains only detailed information about a single record. 
Examples of list and detail pages are illustrated in (Zhu et 
al., 2006). The dataset LDST contains 771 list pages and
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Table 1. Performance of different models on production information extraction. Here, “Desc” denotes the attribute Description. 

 

 

 

 

 

 

 

 

 

 

 

 
the dataset DDST contains 450 detailed pages. Among all 
these pages, 200 list pages and 150 detail pages are used 
as training data in (Zhu et al., 2006). We use the same 
setting for training and testing all the models. 

We compare our model with HCRFs, Dynamic Trees (D-
Trees), and fixed-structured tree models (F-Trees). For 
HCRFs and F-Trees, all training pages are hierarchically 
labeled with leaf labels and inner labels as defined in (Zhu 
et al., 2006). The training is complete, and exact message 
passing algorithms are used to learn their parameters and 
find MAP label assignments. For DHMRFs and D-Trees, 
labels of leaf nodes are kept the same and inner labels are 
hidden during learning. For the incomplete training, we 
apply the variational method developed in this paper for 
DHMRFs. Mean field approximation is also used for 
Dynamic Trees. For DHMRFs and HCRFs, the same set 
of feature functions are used for class label assignment. 
Details about the definition of these feature functions are 
presented in (Zhu et al., 2006). 

To apply the dynamic models DHMRFs and D-Trees, 
initial configuration of the model structure must be 
carried out first. Basically, we need to initially set the 
number of layers and the number of nodes at each layer. It 
may be different for different application domains to set 
the initial configuration. For image processing, it can be 
done via sub-sampling or wavelet filtering. For web data 
extraction, the data are represented as texts, images, 
buttons, and so on. These atomic information units are 
more expressive compared to image pixels. There is 
definitely no benefit to view a webpage as a collection of 
image pixels and then apply the methods in image 
processing. Here, we use the same number of layers (and 
the same number of nodes at each layer) in dynamic 
models as in the fixed vision-trees (Zhu et al., 2006). 

For D-Trees, two sets of parameters – conditional 
probability tables (CPTs) and affinities, need to be set. 
We keep the affinities fixed and learn the model’s CPTs. 
To avoid over-parameterization, layer-wise CPT sharing 

is adopted in previous work. However, for heterogeneous 
web data, three-layer-wise sharing is better. That is, every 
three layers from the top down share one CPT. To 
incorporate evidence, we use the class-independent model 
(Storkey et al., 2003) with emission distributions set as 
the empirical frequencies in the training dataset. CPTs are 
also initialized as frequencies. To avoid zero probabilities 
of unseen samples, Laplace’s rule is used with 
pseudocount set at one. Our study shows that when the 
affinities are set as 0 for the natural parent, -1 for the 
nearest neighbors of the natural parent, and -3 for the null 
parent, better performance is achieved compared with 
previously used settings. The CPTs used for our 
experiments are achieved with 10 iterations. 

4.2  Results and Discussions 

4.2.1  EXTRACTION ACCURACY 

Table 1 shows the extraction accuracy of different models. 
We use the standard measures Precision, Recall, and their 
harmonic mean F1 value. Two comprehensive measures 
Average F1 (Avg_F1) and Block Instance Accuracy 
(Blk_IA) (Zhu et al., 2005) are also used. Block Instance 
Accuracy is the percentage of records whose Name, 
Image, and Price are all correctly labeled. Note that each 
product can have only one price which is the current price 
for sale. Other prices detected are treated as errors.  

From the results, we can see that DHMRFs achieve the 
highest performance on both datasets. Compared to the 
fixed HCRFs, on LDST about 3 points in Average F1 and 
about 5 points in Block Instance Accuracy are gained. For 
Name and Description, more than 4 points are achieved in 
both precision and recall, and for Image and Price the 
improvements are slightly smaller (about 2 points in F1). 
This is because Image and Price are usually more 
distinctive than the other attributes. So both models 
perform quite well. On DDST, the improvements in Name 
are about 4 points in both precision and recall, and for 
Description the improvements are about 7 points in both 

Data Sets LDST DDST 

Models F-Trees D-Trees HCRFs DHMRFs F-Trees D-Trees HCRFs DHMRFs 

Name 0.890 0.879 0.911 0.952 0.829 0.785 0.835 0.874 
Image 0.959 0.951 0.966 0.988 0.972 0.928 0.978 0.978 
Price 0.960 0.937 0.963 0.978 0.976 0.947 0.986 0.989 

P 

Desc 0.804 0.800 0.788 0.828 0.722 0.698 0.663 0.730 
Name 0.842 0.744 0.882 0.928 0.779 0.684 0.761 0.799 
Image 0.908 0.805 0.936 0.958 0.868 0.809 0.892 0.898 
Price 0.910 0.794 0.936 0.949 0.888 0.826 0.899 0.905 

R 

Desc 0.762 0.678 0.764 0.811 0.641 0.609 0.604 0.668 
Name 0.865 0.806 0.896 0.940 0.803 0.731 0.796 0.835 
Image 0.933 0.872 0.951 0.973 0.917 0.864 0.933 0.936 
Price 0.934 0.860 0.948 0.963 0.930 0.882 0.940 0.945 

F1 

Desc 0.782 0.734 0.776 0.819 0.679 0.650 0.632 0.698 
Avg_F1  0.879 0.818 0.893 0.924 0.832 0.782 0.825 0.854 
Blk_IA  0.869 0.837 0.890 0.940 0.809 0.762 0.817 0.853 
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Figure 2. Plot (a) shows the log posteriors of MAP dynamic structures against those of fixed structures. Samples in asterisks are from 
LDST and those in circles are from DDST. Plot (b) is the change of average contrastive divergence with respect to iteration numbers. 

precision and recall. Small improvements are achieved in 
Image and Price due to the same reason as in list pages. 

The improvements demonstrate the merits of DHMRFs. 
First, DHMRFs can incorporate the two-dimensional 
neighborhood dependencies among the nodes at the same 
level, which have been shown to be useful in (Zhu et al., 
2005), while HCRFs must take a sequentialization to put 
these nodes into a chain. By dynamically selecting 
connections between different nodes, DHMRFs can bring 
together the attributes of the same object (here, an object 
is a product item), and thus the correlation between these 
attributes can be strengthened. Second, DHMRFs can deal 
with webpages with intertwined attributes (Zhai & Liu, 
2005). For these webpages, the attributes of different 
objects are intertwined in HTML tag trees. Unaware of 
semantic labels, the constructed vision-trees (Zhu et al., 
2006) also have intertwined attributes. In these cases, the 
fixed-structured HCRFs cannot correctly detect data 
records by simply assigning labels to the nodes of a 
vision-tree. Instead, as structure selection is integrated 
with labeling in DHMRFs, the dynamic model can 
properly group the attributes of the same object and at the 
same time separate the attributes of different objects with 
the help of semantic labels. The semantic labels have been 
shown helpful in detecting data records (i.e. groups of 
attributes) in (Zhu et al., 2006). Note that although 
intertwined cases are usually fewer than non-intertwined 
cases, they are not sparse samples in our model. This is 
because although their edge connections in HTML tag 
trees are somewhat different from non-intertwined ones, 
the visual features they share are almost the same. Thus, 
training samples with or without intertwined cases can 
teach a good model. 

Compared to the fixed F-Trees, the worse performance of 
D-Trees is quite counter-intuitive. However, a close 
examination of the results reveals that the reason for the 
worse performance is due to the less discriminative power 
of D-Trees. As we have stated, for diverse web data CPT 
sharing can be difficult. Although empirical studies can 
find a good sharing method, we couldn’t learn an optimal 
model with a limited set of training samples. Furthermore, 
its generative characteristic causes difficulty in encoding 
useful features. In this way, more uncertainty in structure 
selection couldn’t be resolved than that in DHMRFs. This 

is evident if we look at the average log-likelihood of the 
MAP connections over all samples and all nodes. For D-
Trees the average value is -0.4080, and for DHMRFs it is 
-0.3170. In terms of probability, they are equivalent to 
0.6650 and 0.7283 respectively. The less discriminative 
power of D-Trees causes additional errors in constructing 
model structures even for the non-intertwined cases, and 
thus hurts the accuracy of record detection and attribute 
labeling. So, D-Trees perform worse than F-Trees, which 
can deal with the non-intertwined cases well. The results 
also show that the directed tree models can perform well 
on our datasets, but are inferior to HCRFs. 

4.2.2  FITNESS OF MODEL STRUCTURE 

Figure 2(a) compares the posterior probabilities of the 
MAP structures constructed by DHMRFs with those of 
the fixed structures. In terms of the number of nodes, the 
sizes of webpages change from 39 to 576 (average 166) in 
LDST, and the log posteriors change from -503.80 to -
4.49 (average -50.7). In DDST, sizes range from 14 to 705 
(average 131), and log posteriors range from -184.40 to -
1.72 (average -42.47). Here, we only present the samples 
whose log posteriors are between -200 and 0 because 
most of the samples (>97%) fall into this interval. We can 
see that the MAP structures by DHMRFs always appear 
above the equal probability line. Thus, the structures 
found by the dynamic model have higher posterior 
probabilities. Another observation is that the distribution 
of samples from DDST is more disperse than that of the 
samples from LDST. The reason is that in list pages the 
attributes of an object always concentrate into small 
clusters while they can scatter anywhere in detail pages. 

4.2.3  STUDY ABOUT THE INFERENCE ALGORITHM 

Figure 2(b) shows the change of average contrastive 
divergence with respect to iteration numbers in the 
learning of DHMRFs. To initialize the algorithm, at the 
wake phrase imy  are set to a uniform distribution plus a 
Gaussian noise with zero mean and variance 0.01, and ilµ  
are set to a random distribution. The model weights are 
initialized to zero. We can see that before 7 iterations 
average contrastive divergence decreases stably. And 
after 7, slight disturbances appear. But as for extraction 
accuracy, marginal changes occur (no more than 0.5 point 
in Block Instance Accuracy). Thus, the learning algorithm 
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is quite stable. All the above results are achieved at 
iteration 7. The same initialization is used in labeling, and 
by running both learning and labeling many times, we 
observe that the algorithm is insensitive to the random 
initialization. Since the mean field equations are locally 
calculated and their update can typically converge within 
5 iterations, both the learning and labeling are efficient. 

5.  Conclusions 

In this paper, we propose Dynamic Hierarchical Markov 
Random Fields to discriminatively incorporate structural 
uncertainty in hierarchical modeling. By dynamically 
selecting connections between variables, it can address 
the blocky artifact issue in diverse web data extraction. 
Compared to directed models, DHMRFs are compact in 
representation and powerful in encoding useful features. 
The model admits efficient variational approximation 
algorithms to learn parameters and to do labeling. We 
apply the proposed model to web data extraction. The 
results demonstrate great promise, and show that it is 
possible to alleviate the burden of manual labeling of 
inner nodes in learning fixed-structured models. 
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