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Mixed membership models have shown great promise in analyzing genetics, text documents, and
social network data. Unlike most existing likelihood-based approaches to learning mixed member-
ship models, we present a discriminative training method based on the maximum margin principle
to utilize supervising side information such as ratings or labels associated with documents to dis-
cover more predictive low-dimensional representations of the data. By using the linear expectation
operator, we can derive efficient variational methods for posterior inference and parameter esti-
mation. Empirical studies on the 20 Newsgroup dataset are provided. Our experimental results
demonstrate qualitatively and quantitatively that the max-margin-based mixed membership model
(topic model in particular for modeling text): 1) discovers sparse and highly discriminative topical
representations; 2) achieves state-of-the-art prediction performance; and 3) is more efficient than
existing supervised topic models.
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18.1 Introduction
Mixed membership models are hierarchical extensions of finite mixture models where each data
point exhibits multiple components. They have been successfully applied to analyze genet-
ics (Pritchard et al., 2000), social networks (Airoldi et al., 2008), and text documents. For text
analysis, probabilistic latent aspect models such as latent Dirichlet allocation (LDA) (Blei et al.,
2003) have recently gained much popularity for stratifying a large collection of documents by pro-
jecting every document into a low-dimensional space spanned by a set of bases that capture the
semantic aspects, also known as topics, of the collection. LDA posits that each document is an
admixture of latent topics, of which each topic is represented as a unigram distribution over a given
vocabulary. The document-specific admixture proportion vector θ is modeled as a latent Dirich-
let random variable, and can be regarded as a low-dimensional representation of the document in
a topical space. This low-dimensional representation can be used for downstream tasks such as
classification, clustering, or merely as a tool for structurally visualizing the otherwise unstructured
document collection.

LDA is typically built on a discrete bag-of-words representation of input contents, which can
be texts (Blei et al., 2003), images (Fei-Fei and Perona, 2005), or multi-type data (Blei and Jor-
dan, 2003). However, in many practical applications, we can easily obtain useful side information
besides the document or image contents. For example, when online users post their reviews for prod-
ucts or restaurants, they usually associate each review with a rating score or a thumbs-up/thumbs-
down opinion; web sites or pages in the public Yahoo! Directory1 can have their categorical labels;
and images in the LabelMe (Russell et al., 2008) database are organized by a visual ontology and ad-
ditionally each image is associated with a set of annotation tags. Furthermore, there is an increasing
trend towards using online crowdsourcing services (such as Amazon Mechanical Turk2) to collect
large collections of labeled data with a reasonably low price. Such side information often provides
useful high-level or direct summarization of the content, but it is not directly utilized in the original
LDA to influence topic inference. One would expect that incorporating such information into latent
aspect modeling could guide a topic model towards discovering secondary (or non-dominant) but
semantically more salient statistical patterns (Chechik and Tishby, 2002) that may be more interest-
ing or relevant to the user’s goal, such as making predictions on unlabeled data.

To explore this potential, developing new topic models that appropriately capture side informa-
tion mentioned above has recently gained increasing attention. Representative attempts include the
supervised topic model (sLDA) (Blei and McAuliffe, 2007), which captures real-valued document
ratings as a regression response; multi-class sLDA (Wang et al., 2009), which directly captures dis-
crete labels of documents as a classification response; and discriminative LDA (DiscLDA) (Lacoste-
Julien et al., 2008), which also performs classification, but with a mechanism different from that of
sLDA. All these models focus on the document-level side information such as document categories
or review rating scores to supervise model learning. More variants of supervised topic models can
be found in a number of applied domains, such as the aspect rating model (Titov and McDonald,
2008) for predicting ratings for each aspect of a hotel. In computer vision, various supervised topic
models have been designed for understanding complex scene images (Sudderth et al., 2005; Fei-Fei
and Perona, 2005).

It is worth pointing out that among existing supervised topic models for incorporating side
information, there are two classes of approaches, namely, downstream supervised topic models
(DSTM) and upstream supervised topic models (USTM). In a DSTM, the response variable is pre-
dicted based on the latent representation of the document, whereas in a USTM the response variable
is being conditioned to generate the latent representation of the document. Examples of USTM

1See http://dir.yahoo.com/.
2See https://www.mturk.com/.
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include DiscLDA and the scene understanding models (Sudderth et al., 2005; Fei-Fei and Perona,
2005), whereas sLDA is an example of DSTM. Another distinction between existing supervised
topic models is the training criterion, or more precisely, the choice of objective function in the
optimization-based learning. The sLDA models are trained by maximizing the joint likelihood of
the content data (e.g., text or image) and the responses (e.g., labeling or rating), whereas DiscLDA
models are trained by maximizing the conditional likelihood of the responses given contents.

In this chapter, we present maximum entropy discrimination latent Dirichlet allocation
(MedLDA), a supervised topic model leveraging the maximum margin principle for making more
effective use of side information during estimation of latent topical representations. Unlike existing
supervised topic models mentioned above, MedLDA employs an arguably more discriminative max-
margin learning technique within a probabilistic framework; and unlike the commonly adopted two-
stage heuristic which first estimates a latent topic vector for each document using a topic model and
then feeds them to another downstream prediction model, MedLDA integrates the mechanism be-
hind max-margin prediction models (e.g., SVMs) with the mechanism behind hierarchical Bayesian
topic models (e.g., LDA) under a unified constrained optimization framework. It employs a com-
posite objective motivated by a tradeoff between two components—the negative log-likelihood of an
underlying topic model which measures the goodness-of-fit for document contents, and a measure
of prediction error on training data. It then seeks a regularized posterior distribution of the predictive
function in a feasible space defined by a set of expected max-margin constraints generalized from
the SVM-style margin constraints. Our proposed approach builds on earlier developments in max-
imum entropy discrimination (MED) (Jaakkola et al., 1999; Jebara, 2001) and partially observed
maximum entropy discrimination Markov network (PoMEN) (Zhu et al., 2008). In MedLDA, be-
cause of the influence of both the likelihood function over content data and max-margin constraints
induced by the side information, the discovery of latent topics is therefore coupled with the max-
margin estimation of model parameters. This interplay can yield latent topical representations that
are more discriminative and more suitable for supervised prediction tasks, as we demonstrate in
the experimental section. We also present an efficient variational approach for inference under
MedLDA, with a running time comparable to that of an unsupervised LDA and lower than other
likelihood-based supervised LDAs. This advantage stems from the fact that MedLDA can directly
optimize a margin-based loss instead of a likelihood-based one, and thereby avoids dealing with
the normalization factor resultant from a full probabilistic generative formulation, which generally
makes learning harder.

Finally, although we have focused on topic models, we emphasize that the methodology we
develop is quite general and can be applied to perform max-margin learning for various mixed
membership models, including the relational model (Airoldi et al., 2008). Moreover, the ideas can
be extended to nonparametric Bayesian models (Zhu et al., 2011a; Zhu, 2012; Xu et al., 2012).

The rest of this chapter is structured as follows. Section 18.2 introduces the preliminaries that
are needed to present MedLDA. Section 18.3 presents the MedLDA model for classification, to-
gether with an efficient algorithm. Section 18.4 presents empirical studies of MedLDA. Finally,
Section 18.5 concludes this chapter with future research directions discussed.

18.2 Preliminaries
We begin with a brief overview of the fundamentals of mixed membership models, support vector
machines, and maximum entropy discrimination (Jaakkola et al., 1999), which constitute the major
building blocks of the proposed MedLDA.
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18.2.1 Hierarchical Bayesian Mixed Membership Models

A general formulation of mixed membership models was presented in Erosheva et al. (2004), which
characterizes these models in terms of assumptions at four levels: population, subject, latent vari-
able, and sampling scheme. Population level assumptions describe the general structure of the
population that is common to all subjects. Subject level assumptions specify the distribution of ob-
served responses given individual membership scores. Latent variable level assumptions are about
whether the membership scores are fixed or random. Finally, the last level of assumptions specify
the number of distinct observed characteristics (attributes) and the number of replications for each
characteristic.

(1) Population Level. Assume that there are K components or basis subpopulations in the popu-
lations of interest. For each subpopulation k, we denote by f(xdn|βkn) the probability distri-
bution of the nth response variable for the dth subject, where βk is an M -dimensional vector
of parameters. Within a subpopulation, the observed responses are assumed to be independent
across subjects and characteristics.

(2) Subject Level. For each subject d, a membership vector θd = (θd1, . . . , θdK) represents the
degrees of the subject’s membership to the various subpopulations. The distribution of the
observed response xdn for each subject given the membership scores θd is then p(xdn|θd) =∑
k θdkf(xdn|βkn). Conditional on the mixed membership scores, the response variables xdn

are independent of each other, and also independent across subjects.

(3) Latent Variable Level. With respect to the membership scores, one could assume they
are either fixed unknown constants or random realizations from some underlying distribu-
tion. For Bayesian mixed membership models, which are our focus, the latter strategy is
adopted, that is, assume that θd are realizations of latent variables from some distribution
Dα, parameterized by a vector α. The probability of observing xdn is then p(xdn|α,β) =∫ (∑

k θdkf(xdn|βkn)
)
Dα(dθ).

(4) Sampling Scheme Level. Suppose R independent replications of M distinct character-
istics are observed for the dth subject. The conditional probability of observing xd =
{xrd1, . . . , x

r
dM}Rr=1 given the parameters is then

p(xd|α,β) =

∫ ( M∏
n=1

R∏
r=1

K∑
k=1

θdkf(xrdn|βkn)

)
Dα(dθ). (18.1)

Hierarchical Bayesian mixed membership models have been widely used in analyzing various
forms of data, including discrete text documents (Blei et al., 2003), population genetics (Pritchard
et al., 2000), social networks (Airoldi et al., 2008), and disability survey data (Erosheva, 2003).
Below, we will study the mixed membership models for discrete text documents (i.e., topic models)
as a test bed for mixed membership modeling ideas. But we emphasize that the methodology we
will develop is applicable to a broad range of hierarchical Bayesian models.

18.2.2 Hierarchical Bayesian Topic Models

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a Bayesian mixed membership model for
modeling discrete text documents. In LDA, the components or subpopulations are topics, of which
each topic is a multinomial distribution over theM words in a given vocabulary, i.e., βk ∈ P , where
P is the space of probability distributions with an appropriate dimension which will be omitted when
the context is clear; and the membership scores θd for document d is a mixing proportion vector over
the K topics. We denote the vector of words appearing in document d as wd = (wd1, . . . , wdNd).
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For the same word that appears for multiple times, there are multiple place holders in wd. Thus,
wd can be seen as a replication of appearing words. Let β = [β1; . . . ;βK ] denote the K ×M
matrix of topic parameters. Under LDA, the likelihood of a document corresponds to the following
generative process:

1. For document d, draw a topic mixing proportion vector θd: θd|α ∼ Dir(α);
2. For the nth word in document d, where 1 ≤ n ≤ Nd,

(a) Draw a topic assignment zdn according to θd: zdn|θd ∼ Mult(θd);

(b) Draw the word wdn according to zdn: wdn|zdn,β ∼ Mult(βzdn),

where zdn is a K-dimensional indicator vector (i.e., only one element is 1; all others are 0), an
instance of the topic assignment random variable Zdn, and Dir(α) is a K-dimensional Dirichlet
distribution, parameterized by α. With a little abuse of notations, we have used βzdn to denote the
topic that is selected by the non-zero element of zdn.

Let zd = {zdn}Ndn=1 denote the set of topic assignments for all the words in document d. For
a corpus D that contains D documents, we let Θ = {θd}Dd=1, Z = {zd}Dd=1, and W = {wd}Dd=1.
According to the above generative process, an unsupervised LDA defines the joint distribution

p(Θ,Z,W|α,β) =

D∏
d=1

p(θd|α)

(
N∏
n=1

p(zdn|θd)p(wdn|zdn,β)

)
. (18.2)

For LDA, the learning task is to estimate the unknown parameters (α,β). Maximum likelihood
estimation (MLE) is usually applied, which solves the problem

max
α,β

log p(W|α,β), s.t : βk ∈ P. (18.3)

Once an LDA model is given (i.e., after learning), we can apply it to perform exploratory analysis
for discovering underlying patterns. This task is done by deriving the posterior distribution using
Bayes’ rule, that is,

p(Θ,Z|W,α,β) =
p(Θ,Z,W|α,β)

p(W|α,β)
. (18.4)

Computationally, however, the likelihood p(W|α,β) is intractable to compute exactly. Therefore,
approximate inference algorithms based on variational (Blei et al., 2003) or Markov chain Monte
Carlo (MCMC) methods (Griffiths and Steyvers, 2004) have been widely used for parameter esti-
mation and posterior inference under LDA.

Note that we have restricted ourselves to treat β as an unknown parameter, as done in Blei and
McAuliffe (2007); Wang et al. (2009). Extension to a Bayesian treatment of β (i.e., by putting a
prior over β and inferring its posterior) can be easily done in LDA as shown in the literature (Blei
et al., 2003), where posterior inference is to find p(Θ,Z,β|W,α) by using Bayes’ rule. As we shall
see, MedLDA can also be easily extended to the full Bayesian setting under a general framework of
regularized Bayesian inference.

The LDA described above does not utilize side information for learning topics and inferring
topic vectors θ, which could limit their power for predictive tasks. To address this limitation,
supervised topic models (sLDA) (Blei and McAuliffe, 2007) introduce a response variable Y to
LDA for each document, as shown in Figure 18.1. For regression, where y ∈ R, the genera-
tive process of sLDA is similar to LDA, but with an additional step—Draw a response variable:
y|zd,η, δ2 ∼ N (η>z̄d, δ

2) for each document d—where z̄d = 1
N

∑
n zdn is the average topic

assignment over all the words in document d; η is the regression weight vector; and δ2 is a noise
variance parameter. Then, the joint distribution of sLDA is

p(Θ,Z,y,W|α,β,η, δ2) = p(Θ,Z,W|α,β)p(y|Z,η, δ2), (18.5)
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FIGURE 18.1
Graphical illustration of LDA (left) (Blei et al., 2003); and supervised LDA (right) (Blei and
McAuliffe, 2007).

where y = {yd}Dd=1 is the set of labels and p(y|Z,η, δ2) =
∏
d p(yd|η>z̄d, δ

2) due to the model’s
conditional independence assumption. In this case, the likelihood is p(y,W|α,β,η, δ2) and that
task of posterior inference is to find the posterior distribution p(Θ,Z|W,y,α,β,η, δ2) by using
Bayes’ rule. Again, due to the intractability of the likelihood, variational methods were used to do
approximate inference and MLE.

By changing the likelihood model of Y , sLDA can deal with various types of responses, such as
discrete ones for classification (Wang et al., 2009) using the multi-class logistic regression

p(y|zd,η) =
exp(η>y z̄d)∑
y′ exp(η>y′ z̄d)

, (18.6)

where ηy is the vector of parameters associated with class y. However, posterior inference in an
sLDA classification model can be more challenging than that in the sLDA regression model. This
is because the non-Gaussian probability distribution in Equation (18.6) is highly nonlinear in η
and z, and its normalization factor can make the topic assignments of different words in the same
document strongly coupled. If we perform fully Bayesian inference, the likelihood is non-conjugate
with the commonly used priors, e.g., a Gaussian prior over η, and this imposes further challenges on
posterior inference. Variational methods were successfully used to approximate the normalization
factor (Wang et al., 2009) in an EM algorithm, but they can be computationally expensive as we
shall demonstrate in the experimental section.3

DiscLDA (Lacoste-Julien et al., 2008) is another supervised topic model for classification.
DiscLDA is an upstream model, and the unknown parameter is the transformation matrix used
to generate the document latent representations conditioned on class labels. This transformation
matrix is learned by maximizing the conditional marginal likelihood of the text given class labels.

This progress notwithstanding, most current developments of supervised topic models have been
built on a likelihood-driven probabilistic inference paradigm. In contrast, the max-margin-based
techniques widely used in learning discriminative models (Vapnik, 1998; Taskar et al., 2003) have
been rarely exploited to learn supervised topic models. Our work in Zhu et al. (2012) presents
the first formulation of max-margin supervised topic models,4 followed by various work on image

3For fully Bayesian sLDA, a Gibbs sampling algorithm was developed in Zhu et al. (2013) by exploring data augmentation
techniques.

4A preliminary version was first published in 2009 (Zhu et al., 2009).
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annotation (Yang et al., 2010), classification (Wang and Mori, 2011), and entity relationship extrac-
tion (Li et al., 2011). In this chapter, we present a novel formulation of MedLDA under the general
framework of regularized Bayesian inference. Below, we briefly review the max-margin principle
using the example of support vector machines.

18.2.3 Support Vector Machines

Depending on the nature of the response variable, the max-margin principle can be exploited in both
classification and regression. Below we use document classification as an example to recapitulate
the ideas behind SVMs, which we will shortly leverage to build our max-margin topic models.

Let D = {(x1, y1), · · · , (xD, yD)} be a training set, where x ∈ X are inputs such as
document-feature vectors, and y are categorical response values taking values from a finite set
Y = {1, · · · , L}. We consider the general multi-class classification where L is greater than 2.
The goal of SVMs is to find a discriminant function h(y,x;η) ∈ F that could make accurate pre-
dictions with the argmax rule ŷ = arg max

y

h(y,x;η). One common choice of the function family

F is linear functions, that is, h(y,x;η) = η>y f(x), where f = (f1, · · · , fI)> is a vector of feature
functions fi : X → R, and ηy is the corresponding weight vector associated with class y. Formally,
the linear SVM finds an optimal linear function by solving the following constrained optimization
problem (Crammer and Singer, 2001):5

min
η,ξ

1

2
‖η‖22 + C

D∑
d=1

ξd (18.7)

s.t. : h(yd,xd;η)− h(y,xd;η) ≥ `d(y)− ξd,∀d,∀y,

where η = [η>1 , · · · ,η>L ]> is the concatenation of all subvectors; ξ are non-negative slack variables
that tolerate some errors in the training data; C is a positive regularization constant; and `d(y)
is a non-negative function that measures the cost of predicting y if the ground truth is yd. It is
typically assumed that `d(yd) = 0, i.e., no cost for correct predictions. The quadratic programming
(QP) problem can be solved in a Lagrangian dual formulation. Samples with non-zero Lagrange
multipliers are called support vectors.

18.2.4 Maximum Entropy Discrimination

The standard SVM formulation does not consider uncertainties of unknown variables, and it is thus
far difficult to see how to incorporate the max-margin principle into Bayesian mixed membership
models or topic models in particular. One significantly further step towards uniting the principles
behind Bayesian generative modeling and max-margin learning is the maximum entropy discrim-
ination (MED) formalism (Jebara, 2001), which learns a distribution of all possible classification
models that belong to a particular parametric family, subject to a set of margin-based constraints.
For instance, the MED classification model learns a distribution q(η) through solving the following
optimization problem:

min
q(η)∈P,ξ

KL(q(η)‖p0(η)) + C

D∑
d=1

ξd (18.8)

s.t. : Eq[h(yd,xd;η)]− Eq[h(y,xd;η)] ≥ `d(y)− ξd,∀d,∀y,

where p0(η) is a prior distribution over the parameters, and KL(p‖q) , Ep[log(p/q)] is the
Kullback-Leibler (KL) divergence.

5The formulation implies that ξd ≥ 0, since all possible predictions including yd are included in the constraints.
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As studied in Jebara (2001), this MED problem leads to an entropic-regularized posterior dis-
tribution of the SVM coefficients, q(η); and the resultant predictor ŷ = arg max

y

Eq(η)[h(y,x;η)]

enjoys several nice properties and subsumes the standard SVM as special cases when the prior
p0(η) is standard normal. Moreover, as shown in Zhu and Xing (2009) and Zhu et al. (2011b),
with different choices of the prior over η, such as a sparsity-inducing Laplace or a nonparametric
Dirichlet process, the resultant q(η) can exhibit a wide variety of characteristics and are suitable
for diverse utilities such as feature selection or learning complex non-linear discriminating func-
tions. Finally, the recent developments of the maximum entropy discrimination Markov network
(MaxEnDNet) (Zhu and Xing, 2009) and partially observed MaxEnDNet (PoMEN) (Zhu et al.,
2008) have extended the basic MED to the much broader scenarios of learning structured prediction
functions with or without latent variables.

In applying the MED idea to learn a supervised topic model, a major difficulty is the presence
of heterogeneous latent variables in the topic models, such as the topic vector θ and topic indica-
tor Z. In the sequel, we present a novel formalism called maximum entropy discrimination LDA
(MedLDA) that extends the basic MED to make this possible, and at the same time discovers latent
discriminating topics present in the study corpus based on available discriminant side information.

18.3 MedLDA: Max-Margin Supervised Topic Models
Now we present a new class of supervised topic models that explicitly employ labeling informa-
tion in the context of document classification.6 To make our methodology general, we formalize
MedLDA under the framework of regularized Bayesian inference (Zhu et al., 2011a), which can
in principle be applied to any Bayesian mixed membership models with a slight change of adding
some posterior constraints to consider the supervising side information.

18.3.1 Bayesian Inference as a Learning Model

As shown in Equation (18.4), Bayesian inference can be seen as an information processing rule that
projects the prior p0 and empirical data to a posterior distribution via the Bayes’ rule. Under this
classic interpretation, a natural way to consider supervising information is to extend the likelihood
model to incorporate it, as adopted in sLDA models.

A fresh interpretation of Bayesian inference was given by Zellner (1988), which provides a
novel and more natural interpretation of MedLDA, as we shall see. Specifically, the posterior distri-
bution by Bayes’ rule is in fact the solution of an optimization problem. For instance, the posterior
p(Θ,Z|W,α,β) of LDA is equivalent to the optimum solution of

min
q(Θ,Z)∈P

KL(q(Θ,Z)‖p0(Θ,Z|α,β))− Eq[log p(W|Θ,Z,β)]. (18.9)

We will use L0(q(Θ,Z),α,β) to denote the objective function. In fact, we can show that the opti-
mum objective value is the negative log-likelihood − log p(W|α,β). Therefore, the MLE problem
can be equivalently written in the variational form

min
α,β

(
min

q(Θ,Z)∈P
L0(q(Θ,Z),α,β)

)
= min

α,β,q(Θ,Z)∈P
L0(q(Θ,Z),α,β), (18.10)

which is the same as the objective of the EM algorithm (Blei et al., 2003) if no mean field assump-
tions are made. For the case where β is random, we have the same equality as above but with β

6For regression, MedLDA can be developed as in Zhu et al. (2009).
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moved from the set of unknown parameters into the distributions. For the fully Bayesian models
(either treating α as random too or leaving it pre-specified), we can solve an optimization problem
similar as above to infer the posterior distribution.

18.3.2 Regularized Bayesian Inference

For the standard Bayesian inference, the posterior distribution is determined by a prior distribution
and a likelihood model through the Bayes’ rule. Either the prior or the likelihood model indirectly
influences the behavior of the posterior distribution. However, under the above optimization formu-
lation of Bayes’ rule, we can have an additional channel of bringing in additional side information
to directly regularize the properties of the desired posterior distributions. LetM be a model con-
taining all the variables (e.g., Θ and Z for LDA) whose posterior distributions we are trying to infer.
Let D be the data (e.g., W) whose likelihood model is defined, and let τ be hyperparameters. One
formal implementation of this idea is the regularized Bayesian inference as introduced in Zhu et al.
(2011a), which solves the constrained optimization problem

min
q(M),ξ

KL(q(M)‖p0(M|τ ))− Eq[log p(D|M, τ )] + U(ξ) (18.11)

s.t. : q(M) ∈ Ppost(ξ),

where Ppost(ξ) is a subspace of distributions that satisfy a set of constraints. We assume Ppost(ξ)
is non-empty for all ξ. The auxiliary parameters ξ are usually nonnegative and interpreted as slack
variables. U(ξ) is a convex function, which usually corresponds to a surrogate loss (e.g., hinge loss)
of a prediction rule, as we shall see. Under the above formulation, Zhu et al. (2011a) presented the
infinite latent SVM models for classification and multi-task learning. Below, we present MedLDA
as another instantiation of regularized Bayesian models.

18.3.3 MedLDA: A Regularized Bayesian Model

Let D = {(wd, yd)}Dd=1 be a given fully-labeled training set, where the response variable Y takes
values from the finite set Y . MedLDA consists of two parts. The first part is an LDA likelihood
model for describing input documents. We choose to use an unsupervised LDA, which defines a
likelihood model for W. The second part is a mechanism to consider supervising signal. Since our
goal is to discover latent representations Z that are good for classification, one natural solution is to
connect Z directly to our ultimate goal. MedLDA obtains such a goal by building a classification
model on Z. One good candidate of the classification model is the max-margin method which avoids
defining a normalized likelihood model.

Formally, let η denote the parameters of the classification model. As in MED, we treat η as
random variables and want to infer the joint posterior distribution q(η,Θ,Z|D,α,β), or q(η,Θ,Z)
for short. The classification model is defined as follows. If the latent topic representation z is given,
MedLDA defines the linear discriminant function as

F (y,η, z; w) = η>f(y, z̄), (18.12)

where f(y, z̄) is an LK-dimensional vector whose elements from (y − 1)K to yK are z̄ and all
others are zero; and η is an LK-dimensional vector concatenating L class-specific sub-vectors.
In order to predict on input data, MedLDA defines the effective discriminant function using the
expectation operator

F (y; w) = Eq(η,z)[F (y,η, z; w)], (18.13)

which is a linear functional of q.
With the above definitions, a natural prediction rule for a given posterior distribution q is

ŷ = arg max
y∈Y

F (y; w). (18.14)
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Then, we would like to “regularize” the properties of the latent topic representations to make them
suitable for a classification task. Here, we adopt the framework of regularized Bayesian inference
and impose the following max-margin constraints on the posterior distributions:

F (yd; wd)− F (y; wd) ≥ `d(y), ∀y ∈ Y, ∀d. (18.15)

That is, we want to find a “posterior distribution” that can predict correctly on all the training data
using the prediction rule (18.14). However, in many cases, these hard constraints would be too strict.
In order to learn a robust classifier for the datasets which are not separable, a natural generalization
is to impose the soft max-margin constraints

F (yd; wd)− F (y; wd) ≥ `d(y)− ξd, ∀y ∈ Y, ∀d, (18.16)

where ξ = {ξd} are non-negative slack variables. Let

L1(q(η,Θ,Z),α,β) = KL(q(η,Θ,Z)||p0(η,Θ,Z|α,β))− Eq[log p(W|Z,β)].

We define the soft-margin MedLDA model as solving

min
q(η,Θ,Z)∈P,α,β,ξ

L1(q(η,Θ,Z),α,β) +
C

D

D∑
d=1

ξd (18.17)

s.t. : Eq[η>∆f(y, z̄d)] ≥ `d(y)− ξd, ξd ≥ 0,∀d,∀y,

where the prior is p0(η,Θ,Z|α,β) = p0(η)p0(Θ,Z|α,β), and ∆f(y, z̄d) = f(yd, z̄d)− f(y, z̄d).
By removing slack variables, problem (18.17) can be equivalently written as

min
q(η,Θ,Z)∈P,α,β

L1(q(η,Θ,Z),α,β) + CR(q(η,Θ,Z)), (18.18)

where
R =

1

D

∑
d

arg max
y

(
`d(y)− Eq[η>∆f(y, z̄d)]

)
is the hinge loss, an upper bound of the prediction error on training data.

Based on the equality in Equation (18.10), we can see the rationale underlying MedLDA, which
is that we want to find latent topical representations q(Θ,Z) and a model parameter distribution
q(η) which on one hand tends to predict as accurate as possible on training data, while on the other
hand tends to explain the data well. The two parts are closely coupled by the expected margin
constraints.

Although in theory we can use either sLDA (Wang et al., 2009) or LDA as a building block
of MedLDA to discover latent topical representations, as we have discussed in Section 18.2.2, in-
ference under sLDA could be harder and slower because the probability model of discrete Y in
Equation (18.6) is nonlinear over η and Z, both of which are latent variables in our case, and its
normalization factor strongly couples the topic assignments of different words in the same docu-
ment. Therefore, we choose to use LDA that only models the likelihood of document contents W
but not document label Y as the underlying topic model to discover latent representations Z. Even
with this likelihood model, document labels can still influence topic learning and inference because
they induce margin constraints pertinent to the topical distributions. As we shall see, the resul-
tant MedLDA classification model can be efficiently learned by utilizing existing high-performance
SVM solvers. Moreover, since the goal of max-margin learning is to directly minimize a hinge loss
(i.e., an upper bound of the empirical loss), we do not need a normalized distribution model for
response variables Y .

Note that we have taken a full expectation to define F (y; w) instead of taking the mode as
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done in latent SVMs (Felzenszwalb et al., 2010; Yu and Joachims, 2009), because expectation is a
nice linear functional of the distributions under which it is taken, whereas taking the mode involves
the highly nonlinear argmax function for discrete Z, which could lead to a harder inference task.
Furthermore, due to the same reason to avoid dealing with a highly nonlinear discriminant function,
we did not adopt the method in Jebara (2001) either, which uses log-likelihood ratios to define
the discriminant function when considering latent variables in MED. Specifically, in our case, the
max-margin constraints would be

∀d, ∀y, log
p(yd|wd,α,β)

p(y|wd,α,β)
≥ `d(y)− ξd, (18.19)

which are highly nonlinear due to the complex form of the marginal likelihood p(y|wd,α,β). Our
linear expectation operator is an effective tool to deal with latent variables in the context of maxi-
mum margin learning. In fact, besides the present work, we have successfully applied this operator
to other challenging settings of learning latent variable structured prediction models with nontriv-
ial dependence structures among output variables (Zhu et al., 2008) and learning nonparametric
Bayesian models (Zhu et al., 2011b;a).

18.3.4 Optimization Algorithm for MedLDA

Although we have used the simple linear expectation operator to define max-margin constraints,
the problem of MedLDA is still intractable to directly solve due to the intractability of L1. Below,
we present a coordinate descent algorithm with a further constraint on the feasible distribution
q(η,Θ,Z). Specifically, we impose the fully factorized mean field constraint that

q(η,Θ,Z) = q(η)

D∏
d=1

q(θd|γd)
N∏
n=1

q(zdn|φdn), (18.20)

where γd is a K-dimensional vector of Dirichlet parameters and each φdn parameterizes a multi-
nomial distribution over K topics. With this constraint, we have

F (y; wd) = Eq[η]>f(y, φ̄d),

where φ̄d = Eq[z̄d] = 1/N
∑
n φdn; and the objective can be effectively evaluated since

L1(q(η,Θ,Z),α,β) = KL(q(η)‖p0(η)) + L0(q(Θ,Z),α,β), (18.21)

where L0 can be computed as in Blei et al. (2003). By considering the unconstrained formulation
(18.18), our algorithm alternates between the following steps:

1. Solve for q(η): When q(Θ,Z) and (α,β) are fixed, the subproblem (in an equivalent con-
strained form) is to solve

min
q(η)∈P,ξ

KL(q(η)‖p0(η)) +
C

D

D∑
d=1

ξd (18.22)

s.t. : Eq[η]>∆f(y, φ̄d) ≥ `d(y)− ξd,∀d, ∀y.

By using Lagrangian methods, we have the optimum solution

q(η) =
1

Ψ
p0(η) exp

(
η>(

∑
d

∑
y

µyd∆f(y, φ̄d))

)
, (18.23)
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where the Lagrange multipliers µ are the solution of the dual problem:

max
µ

− log Ψ +
∑
d

∑
y

µyd∆`d(y) (18.24)

s.t. :
∑
y

µyd ∈
[
0,
C

D

]
,∀d.

We can choose different priors in MedLDA for various regularization effects. Here, we consider
the normal prior. For the standard normal prior p0(η) = N (0, I), we can get: q(η) is a normal
with a shifted mean, i.e., q(η) = N (λ, I), where λ =

∑
d

∑
y µ

y
d∆f(y, φ̄d), and the dual

problem is

max
µ

− 1

2
‖
∑
d

∑
y

µyd∆f(y, φ̄d)‖22 +
∑
d

∑
y

µyd∆`d(y) (18.25)

s.t. :
∑
y

µyd ∈
[
0,
C

D

]
,∀d.

The primal form of problem (18.25) is a multi-class SVM (Crammer and Singer, 2001):

min
λ,ξ

1

2
‖λ‖22 +

C

D

D∑
d=1

ξd (18.26)

s.t. : λ>E[∆fd(y)] ≥ ∆`d(y)− ξd, ∀d, ∀y.

We denote the optimum solution by q∗(η) and its mean by λ∗.

2. Solve for φ and γ: By keeping q(η) at its previous optimum solution and fixing (α,β), we
have the subproblem as solving

min
φ,γ
L0(q(Θ,Z),α,β) +

C

D

D∑
d=1

max
y∈Y

(
`d(y)− (λ∗)>∆f(y, φ̄d)

)
. (18.27)

Since q is fully factorized, we can perform the optimization on each document separately. We
observe that the constraints in MedLDA are not dependent on γ and q(η) is also not directly
connected with γ. Thus, optimizing L with respect to γd leads to the same update rule as in
LDA:

γd ← α+

N∑
n=1

φdn. (18.28)

For φ, the constraints do affect its solution. Although in theory we can solve this subproblem
using Lagrangian dual methods, it would be hard to derive the dual objective function (if possi-
ble at all). Here, we choose to update φ using sub-gradient methods. Specifically, let g(φ,γ)
be the objective function of problem (18.27). The sub-gradient is

∂g(φ,γ)

∂φdn
=

∂L0

∂φdn
+

C

ND
(λ∗ȳd − λ∗yd), (18.29)

where ȳd = arg max
y

(`d(y) + (λ∗)>f(y, φ̄d)) is the loss-augmented prediction. By setting the

sub-gradient equal to zero, we can get

φdn ∝ exp
(
E[log θd|γd] + log p(wdn|β) +

C

ND
(λ∗yd − λ∗ȳd)

)
. (18.30)
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We can see that the first two terms in Equation (18.30) are the same as in unsupervised
LDA (Blei et al., 2003), and the last term is due to the max-margin formulation of MedLDA and
reflects our intuition that the discovered latent topical representation is influenced by the margin
constraints. Specifically, for those examples that are misclassified (i.e., ȳd 6= yd), the last term
will not be zero, and it acts as a regularization term that biases the model towards discovering
latent representations that tend to make more accurate prediction on these difficult examples.
Moreover, this term is fixed for words in the document and thus will directly affect the latent
representation of the document (i.e., γd) and therefore leads to a discriminative latent represen-
tation. As we shall see in Section 18.4, such an estimate is more suitable for the classification
task: for instance, MedLDA needs many fewer support vectors than the max-margin classifiers
that are built on raw text or the topical representations discovered by LDA.

3. Solve for α and β: The last substep is to solve for (α,β) with q(η) and q(Θ,Z) fixed. This
subproblem is the same as the problem of estimating (α,β) in LDA, since the constraints do
not directly act on (α,β). Therefore, we have the same update rules:

βkw ∝
∑
d

∑
n

I(wdn = w)φkdn, (18.31)

where I(·) is an indicator function that equals 1 if the condition holds, 0 otherwise. For α,
the same gradient descent algorithm as in Blei et al. (2003) can be applied to find a numerical
solution.

The above formulation of MedLDA has a slack variable associated with each document. This
is known as the n-slack formulation (Joachims et al., 2009). Another equivalent formulation, which
can be more efficiently solved, is the so called 1-slack formulation. The 1-slack MedLDA can be
written as follows:

min
q(η,Θ,Z),α,β,ξ

L1(q(η,Θ,Z),α,β) + Cξ (18.32)

s.t. :
1

D

∑
d

Eq[η>∆fd(ȳd)] ≥
1

D

∑
d

∆`d(ȳd)− ξ,∀(ȳ1, · · · , ȳD).

By using the above alternating minimization algorithm and the cutting plane algorithm for solving
the 1-slack as well as n-slack multi-class SVMs (Joachims et al., 2009), which is implemented in
the SVMstruct package,7 we can solve the 1-slack or n-slack MedLDA model efficiently, as we
shall see in Section 18.4.3. SVMstruct provides the solutions of the primal parameters λ as well as
the dual parameters µ, which are needed to do inference.

18.4 Experiments
In this section, we provide qualitative as well as quantitative evaluation of MedLDA on topic esti-
mation and document classification. For MedLDA and other topic models (except DiscLDA, whose
implementation details are explained in Footnote 12), we optimize the K-dimensional Dirichlet pa-
rameters α using the Newton-Raphson method (Blei et al., 2003). For initialization, we set φ to
be uniform and each topic βk to be a uniform distribution plus a very small random noise; we set

7See http://svmlight.joachims.org/svm\ multiclass.html.
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the posterior mean of η to be zero. We have released our implementation for public use.8 In all
the experimental results, we also report the standard deviation for a topic model with five randomly
initialized runs.

18.4.1 Topic Estimation

We begin with an empirical assessment of topic estimation by MedLDA on the 20 Newsgroups
dataset with a standard list of stopwords9 removed. The dataset contains about 20,000 postings in
20 related categories. We compare this with unsupervised LDA.10 We fit the dataset to a 110-topic
MedLDA model, which exploits the supervised category information, and a 110-topic unsupervised
LDA, which ignores category information.

Figure 18.2 shows the 2D embedding of the inferred topic proportions θ by MedLDA and LDA
using the t-SNE stochastic neighborhood embedding method (van der Maaten and Hinton, 2008),
where each dot represents a document and each color-shape pair represents a category. Visually, the
max-margin based MedLDA produces a good separation of the documents in different categories,
while LDA does not produce a well-separated embedding, and documents in different categories
tend to mix together. This is consistent with our expectation that MedLDA could produce a strong
connection between latent topics and categories by doing supervised learning, while LDA ignores
supervision and thus builds a weaker connection. Intuitively, a well-separated representation is more
discriminative for document categorization. This is further empirically supported in Section 18.4.2.
Note that a similar embedding was presented in Lacoste-Julien et al. (2008), where the transforma-
tion matrix in their model is pre-designed. The results of MedLDA in Figure 18.2 are automatically
learned.

It is also interesting to examine the discovered topics and their relevance to class labels. In
Figure 18.3a we show the top topics in four example categories as discovered by both MedLDA
and LDA. Here, the semantic meaning of each topic is represented by the first ten high probability
words.

To visually illustrate the discriminative power of the latent representations, i.e., the topic propor-
tion vector θ of documents, we illustrate and compare the per-class distribution over topics for each
model at the right side of Figure 18.3a. This distribution is computed by averaging the expected
topic vector of the documents in each class. We can see that MedLDA yields sharper, sparser,
and fast decaying per-class distributions over topics. For the documents in different categories, we
can see that their per-class average distributions over topics are very different, which suggests that
the topical representations by MedLDA have a good discrimination power. Also, the sharper and
sparser representations by MedLDA can result in a simpler max-margin classifier (e.g., with fewer
support vectors), as we shall see in Section 18.4.2. All these observations suggest that the topical
representations discovered by MedLDA have a better discriminative power and are more suitable
for prediction tasks (see Section 18.4.2 for prediction performance). This behavior of MedLDA
is in fact due to the regularization effect enforced over φ as shown in Equation (18.30). On the
other hand, the fully unsupervised LDA seems to discover topics that model the fine details of
documents with no regard for their discrimination power (i.e., it discovers different variations of
the same topic which results in a flat per-class distribution over topics). For instance, in the class
comp.graphics, MedLDA mainly models documents using two salient, discriminative topics (T69
and T11), whereas LDA results in a much flatter distribution. Moreover, in the cases where LDA
and MedLDA discover comparably the same set of topics in a given class (like politics.mideast and
misc.forsale), MedLDA results in a sharper low-dimensional representation.

8See http://www.ml-thu.net/$\sim$jun/software.shtml.
9See http://mallet.cs.umass.edu/.

10We implemented LDA based on the public variational inference code by David Blei, using the same data structures as
MedLDA for fair comparison.
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FIGURE 18.2
t-SNE 2D embedding of the topical representation by MedLDA (above) and unsupervised LDA
(below). The mapping between each index and category name can be found in:
http://people.csail.mit.edu/jrennie/20Newsgroups/.
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FIGURE 18.3
Top topics under each class as discovered by the MedLDA and LDA models (a). The average
entropy of θ over documents on 20 Newsgroups data (b).



Discriminative Training of Mixed Membership Models 385

A quantitative measure for the sparsity or sharpness of the distributions over topics is the entropy.
We compute the entropy of the inferred topic proportion for each document and take the average
over the corpus. Here, we compare MedLDA with LDA, sLDA for multi-class classification (multi-
sLDA) (Wang et al., 2009),11 and DiscLDA (Lacoste-Julien et al., 2008).12 For DiscLDA, as in
Lacoste-Julien et al. (2008), we fix the transformation matrix and set it to be diagonally sparse.
We use the standard training/testing split13 to fit the models on training data and infer the topic
distributions on testing documents. Figure 18.3b shows the average entropy of different models
on testing documents when different topic numbers are chosen. For DiscLDA, we set the class-
specific topic number K0 = 1, 2, 3, 4, 5 and correspondingly K = 22, 44, 66, 88, 110. We can see
that MedLDA yields the smallest entropy, which indicates that the probability mass is concentrated
on quite a few topics, consistent with the observations in Figure 18.3a. In contrast, for LDA the
probability mass is more uniformly distributed on many topics (again consistent with Figure 18.3a),
which results in a higher entropy. For DiscLDA, although the transformation matrix is designed
to be diagonally sparse, the distributions over the class-specific topics and shared topics are flat.
Therefore, the entropy is also high. Using automatically learned transition matrices might improve
the sparsity of DiscLDA.

18.4.2 Prediction Accuracy

We perform binary and multi-class classification on the 20 Newsgroup dataset. To obtain a baseline,
we first fit all the data to an LDA model, and then use the latent representation of the training14

documents as features to build a binary or multi-class SVM classifier. We denote this baseline as
LDA+SVM.

Binary Classification

As in Lacoste-Julien et al. (2008), the binary classification is to distinguish postings of the news-
group alt.atheism and the postings of the group talk.religion.misc. The training set contains 856
documents with a split of 480/376 over the two categories, and the test set contains 569 documents
with a split of 318/251 over the two categories. Therefore, the naive baseline that predicts the most
frequent category for all test documents has accuracy 0.672.

We compare the binary MedLDA with sLDA, DiscLDA, LDA+SVM, and the standard binary
SVM built on raw text features. For supervised LDA, we use both the regression model (sLDA)
(Blei and McAuliffe, 2007) and classification model (multi-sLDA) (Wang et al., 2009). For the
sLDA regression model, we fit it using the binary representation (0/1) of the classes, and use a
threshold 0.5 to make prediction. For MedLDA, to see whether a second-stage max-margin classifier
can improve the performance, we also build a method of MedLDA+SVM similar to LDA+SVM.
For DiscLDA, we fix the transition matrix. Automatically learning the transition matrix can yield
slightly better results, as reported in Lacoste-Julien (2009). For all the above methods that utilize
the class label information, they are fit ONLY on the training data.

11We thank the authors for providing their implementation, on which we made necessary slight modifications, e.g., im-
proving the time efficiency and optimizing α.

12DiscLDA is a conditional model that uses class-specific topics and shared topics. Since the code is not publicly available,
we implemented an in-house version by following the same strategy as in Lacoste-Julien et al. (2008) and share K1 topics
across classes and allocate K0 topics to each class, where K1 = 2K0, and we varied K0 = {1, 2, · · · }. We should
note here that Lacoste-Julien et al. (2008) and Lacoste-Julien (2009) gave an optimization algorithm for learning the topic
structure (i.e., a transformation matrix), however, since the code is not available, we resorted to one of the fixed splitting
strategies mentioned in the paper. Moreover, for the multi-class case, the authors only reported results using the same fixed
splitting strategy we mentioned above. For the number of iterations for training and inference, we followed Lacoste-Julien
(2009). Moreover, following Lacoste-Julien (2009) and personal communication with the first author, we used symmetric
Dirichlet priors on β and θ, and set the Dirichlet parameters to 0.01 and 0.1/(K0 +K1), respectively.

13See http://people.csail.mit.edu/jrennie/20Newsgroups/.
14We use the training/testing split in: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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FIGURE 18.4
Classification accuracy of different models for: (a) binary and (b) multi-class classification on the
20 Newsgroup data.

We use the SVM-light (Joachims, 1999), which provides both primal and dual parameters, to
build SVM classifiers and to estimate the posterior mean of η in MedLDA. The parameter C is
chosen via 5-fold cross-validation during training from {k2 : k = 1, · · · , 8}. For each model, we
run the experiments five times and take the average as the final results. The prediction accuracy of
different models with respect to the number of topics is shown in Figure 18.4(a). For DiscLDA, we
follow Lacoste-Julien et al. (2008) and setK = 2K0+K1, whereK0 is the number of class-specific
topics, K1 is the number of shared topics, and K1 = 2K0. Here, we set K0 = 1, · · · , 8, 10.

We can see that the max-margin MedLDA outperforms the likelihood-based downstream mod-
els, including multi-sLDA, sLDA, and LDA+SVM. The best performances of the two discriminative
models, MedLDA and DiscLDA, are comparable. However, MedLDA is easier to learn and faster
in testing, as we shall see in Section 18.4.3. Moreover, the different approximate inference algo-
rithms used in MedLDA (i.e., variational approximation) and DiscLDA (i.e., Monte Carlo sampling
methods) can also make the performance different. We tried the collapsed variational inference
(Teh et al., 2006) for MedLDA and it can give slightly better results. However, the collapsed vari-
ational method is computationally more expensive. Finally, since MedLDA already integrates the
max-margin principle into its training, our conjecture is that the combination of MedLDA and SVM
does not further improve the performance much on this task. We believe that the slight differences
between MedLDA and MedLDA+SVM are due to the tuning of regularization parameters. For effi-
ciency, we do not change the regularization constant C during training MedLDA. The performance
of MedLDA would be improved if we selected a good C in different iterations because the data
representation is changing.

Multi-class Classification

We perform multi-class classification on 20 Newsgroups with all the 20 categories. The dataset
has a balanced distribution over the categories. For the test set, which contains 7,505 documents
in total, the smallest category has 251 documents and the largest category has 399 documents. For
the training set, which contains 11,269 documents, the smallest and the largest categories contain
376 and 599 documents, respectively. Therefore, the naive baseline that predicts the most frequent
category for all the test documents has the classification accuracy 0.0532.

We compare MedLDA with LDA+SVM, multi-sLDA, DiscLDA, and the standard multi-class
SVM built on raw text. We use the SVMstruct package with a cost function as ∆`d(y) , `I(y 6= yd)
to solve the sub-step of learning q(η) and build the SVM classifiers for LDA+SVM. The parameter
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` is selected with 5-fold cross-validation. The average results, as well as standard deviations over
5 randomly initialized runs, are shown in Figure 18.4(b). For DiscLDA, we use the same equation
as in Lacoste-Julien et al. (2008) to set the number of topics and set K0 = 1, · · · , 5. We can see
that supervised topic models discover more predictive representations for classification, and the
discriminative max-margin MedLDA and DiscLDA perform comparably, slightly better than the
standard multi-class SVM (about 1.3±0.3 percent improvement in accuracy). However, as we have
stated and will show in Section 18.4.3, MedLDA is simpler to implement and faster in testing than
DiscLDA. As we shall see shortly, MedLDA needs much fewer support vectors than standard SVM.

Figure 18.5(a) shows the classification accuracy on the 20 Newsgroups dataset for MedLDA
with 70 topics. We show the results with ` manually set to 1, 4, 8, 12, · · · , 32. We can see that
although the common 0/1-cost works well for MedLDA, we can get better accuracy by using a
larger cost to penalize wrong predictions. The performance is quite stable when ` is set to be
larger than 8. The reason why ` affects the performance is that ` as well as C control: 1) the
scale of the posterior mean of η and the Lagrangian multipliers µ, whose dot-product regularizes
the topic mixing proportions in Equation (18.30); and 2) the goodness-of-fit of the MED large-
margin classifier on the data. For practical reasons, we only try a small subset of candidate C values
in parameter search, which can also influence the difference on performance in Figure 18.5(a).
Performing very careful parameter search on C could possibly shrink the difference. Finally, for a
small ` (e.g., 1 for the 0/1-cost), we usually need a large C in order to obtain good performance.
But, our empirical experience with SVMstruct shows that the multi-class SVM with a larger C (and
smaller `) is typically more expensive to train than the SVM with a larger ` (and smaller C). That
is one reason why we choose to use a large `.

Figure 18.5(b) shows the number of support vectors for MedLDA, LDA+SVM, and the multi-
class SVM built on raw text features, which are high-dimensional (∼60,000 dimensions for the 20
Newsgroup data) and sparse. Here we consider the traditional n-slack formulation of multi-class
SVM and n-slack MedLDA using the SVMstruct package, where a support vector corresponds to a
document-label pair. For MedLDA and LDA+SVM, we set K = 70. For MedLDA, we report both
the number of support vectors at the final iteration and the average number of support vectors over
all iterations. We can see that both MedLDA and LDA+SVM generally need many fewer support
vectors than the standard SVM on raw text. The major reason is that both MedLDA and LDA+SVM
use a much lower-dimensional and more compact representation for each document. Moreover,
MedLDA needs (about 4 times) fewer support vectors than LDA+SVM. This could be because
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slack multi-class SVM, LDA+SVM, and n-slack MedLDA (b). For MedLDA, we show both the
number of support vectors at the final iteration and the average number during training.



388 Handbook of Mixed Membership Models and Its Applications

MedLDA makes use of both text contents and the supervising class labels in the training data,
and its estimated topics tend to be more discriminative when being used to infer the latent topical
representations of documents, i.e., using these latent representations by MedLDA, the documents
in different categories are more likely to be well-separated, and therefore the max-margin classifier
is simpler (i.e., needs fewer support vectors). This observation is consistent with what we have
observed on the per-class distributions over topics in Figure 18.3a. Finally, we observe that about
32% of the support vectors in MedLDA are also the support vectors in multi-class SVM on the raw
features.

18.4.3 Time Efficiency

Now, we report empirical results on time efficiency in training and testing. All the following results
are achieved on a standard desktop with a 2.66GHz Intel processor. We implement all the models
in C++ language.

Training Time

Figure 18.6 shows the average training time together with standard deviations on both binary and
multi-class classification tasks with 5 randomly initialized runs. Here, we do not compare with Dis-
cLDA because learning the transition matrix is not fully implemented in Lacoste-Julien (2009), but
we will compare the testing time with it. From the results, we can see that for binary classification,
MedLDA is more efficient than multi-class sLDA and is comparable with LDA+SVM. The slow-
ness of multi-class sLDA is because the normalization factor in the distribution model of y strongly
couples the topic assignments of different words in the same document. Therefore, the posterior
inference is slower than that of LDA and MedLDA, which uses LDA as the underlying topic model.
For the sLDA regression model, it takes even more training time due to the mismatch between its
normal assumption and the non-Gaussian binary response variables, which prolongs the E-step.

For multi-class classification, the training time of MedLDA is mainly dependent on solving a
multi-class SVM problem. Here, we implemented both 1-slack and n-slack versions of multi-class
SVM (Joachims et al., 2009) for solving the sub-problem of estimating q(η) and Lagrangian mul-
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tipliers in MedLDA. As we can see from Figure 18.6, the MedLDA with 1-slack SVM as the sub-
solver can be very efficient, comparable to unsupervised LDA+SVM. The MedLDA with n-slack
SVM solvers is about three times slower. Similar to the binary case, for the multi-class supervised
sLDA (Wang et al., 2009), because of the normalization factor in the category probability model
(i.e., a softmax function), the posterior inference on different topic assignment variables (in the
same document) is strongly correlated. Therefore, the inference is about ten times slower than that
on LDA and MedLDA, which takes LDA as the underlying topic model.

We also show the time spent on inference and the ratio it takes over the total training time for
different models in Figure 18.7(a). We can clearly see that the difference between 1-slack MedLDA
and n-slack MedLDA is on the learning of SVMs. Both methods have similar inference time. We
can also see that for LDA+SVM and multi-sLDA, more than 95% of the training time is spent on
inference, which is very expensive for multi-sLDA. Note that LDA+SVM takes a longer inference
time than MedLDA because we use more data (both training and testing) to learn unsupervised
LDA.
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FIGURE 18.7
The inference time and total training time for learning different models, as well as the ratio of
inference time over total training time (a). For MedLDA, we consider both the 1-slack and n-slack
formulations; for LDA+SVM, the SVM classifier is the fast 1-slack formulation; and (b) Testing
time of different models with respect to the number of topics for multi-class classification.

Testing Time

Figure 18.7(b) shows the average testing time with standard deviation on the 20 Newsgroup testing
data with five randomly initialized runs. We can see that MedLDA, multi-class sLDA, and unsu-
pervised LDA are comparable in testing time, faster than that of DiscLDA. This is because all three
models of MedLDA, multi-class sLDA, and LDA are downstream models (see the Introduction for
definition). In testing, they do exactly the same tasks, i.e., inferring the overall latent topical repre-
sentation and doing prediction with a linear model. Therefore, they have comparable testing time.
However, DiscLDA is an upstream model, for which the inference to find the category-dependent
latent topic representations is done multiple times. Therefore, in principle, the testing time of an up-
stream topic model is about |C| times slower than that of its downstream counterpart model, where
C is the finite set of categories. The results in Figure 18.7(b) show that DiscLDA is roughly twenty
times slower than other downstream models. Of course, the different inference algorithms can also
make the testing time different.
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18.5 Conclusions and Discussions
We have presented maximum entropy discrimination LDA (MedLDA), a supervised topic model
that uses the discriminative max-margin principle to estimate model parameters such as topic dis-
tributions underlying a corpus, and infer latent topical vectors of documents. MedLDA integrates
the max-margin principle into the process of topic learning and inference via optimizing one single
objective function with a set of expected margin constraints. The objective function is a trade-
off between the goodness-of-fit of an underlying topic model and the prediction accuracy of the
resultant topic vectors in a max-margin classifier. We provide empirical evidence which appears
to demonstrate that this integration could yield predictive topical representations that are suitable
for prediction tasks, such as classification. Our results demonstrate that MedLDA is an attractive
supervised topic model, which can achieve state-of-the-art performance for topic discovery and pre-
diction accuracy while needing fewer support vectors than competing max-margin methods that are
built on raw text or the topical representations discovered by unsupervised LDA.

The results of prediction accuracy on the 20 Newsgroups dataset show that MedLDA works
slightly better than the SVM classifiers built on raw input features. These slight improvements tend
to raise the question, “When and why should we choose MedLDA?” We have two possible answers:

1. MedLDA is a topic model. Besides predicting on unseen data, MedLDA can discover semantic
patterns underlying complex data. In contrast, SVM models are more like black box machines
which take raw input features and find good decision boundaries or regression curves, but that
are incapable of discovering or considering hidden structures of complex data.15 As an exten-
sion of SVM, MedLDA performs both exploratory analysis (i.e., topic discovery) and predictive
tasks (e.g., classification) simultaneously. So, the first selection rule is that if we want to disclose
some underlying patterns besides doing prediction, MedLDA should be preferred to SVM.

2. Even if our goal is prediction performance, MedLDA should also be considered as a competitive
alternative. As shown in the synthetic experiments (Zhu et al., 2012) as well as the follow-up
work (Yang et al., 2010; Wang and Mori, 2011; Li et al., 2011), depending on the data and
problems, max-margin supervised topic models can outperform SVM models, or at least they
are comparable if no gains are obtained. One reason that leads to our current results on 20
Newsgroups is that the fully factorized mean field assumption could be too restricted and lead
to inaccurate estimates. In fact, we have tried more sophisticated inference methods such as
collapsed variational inference (Teh et al., 2006) and collapsed Gibbs sampling,16 both of which
could lead to superior prediction performance.

Finally, MedLDA presents one of the first successful attempts, in the context of Bayesian mixed
membership models (or topic models in particular), towards pushing forward the interface be-
tween max-margin learning and Bayesian generative modeling. As further demonstrated in others’
work (Yang et al., 2010; Wang and Mori, 2011; Li et al., 2011) as well as our recent work on regu-
larized Bayesian inference (Chen et al., 2012; Zhu et al., 2011a;b; Zhu, 2012; Xu et al., 2012), the
max-margin principle could be a fruitful addition to “regularize” the desired posterior distributions
of Bayesian models for performing better prediction in a broad range of scenarios, such as image
annotation/classification, multi-task learning, social link prediction, low-rank matrix factorization,
etc. Of course, the flexibility on performing max-margin learning brings in new challenges. For
example, the learning and inference problems of such models need to deal with some non-smooth

15Some strategies like sparse feature selection can be incorporated to make an SVM more interpretable in the original
feature space, but this is beyond the scope of this discussion.

16Sampling methods for MedLDA can be developed by using Lagrangian dual methods. Details are reported in Jiang et al.
(2012).
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loss functions (e.g., the hinge loss in MedLDA), for which developing efficient algorithms for large-
scale applications is a challenging research problem. Moreover, although we have good theoretical
understandings of the generalization ability of max-margin methods without latent variables (e.g.,
SVMs), it is a challenging problem to provide theoretical guarantees for the generalization perfor-
mance of max-margin models with latent variables.

References
Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership stochastic

blockmodels. Journal of Machine Learning Research : 1981–2014.

Blei, D. M. and Jordan, M. I. (2003). Modeling annotated data. In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’03). New York, NY, USA: ACM, 127–134.

Blei, D. M. and McAuliffe, J. (2007). Supervised topic models. In Platt, J. C., Koller, D., Singer, Y.,
and Roweis, S. (eds), Advances in Neural Information Processing Systems 20. Cambridge, MA:
The MIT Press, 121–128.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research : 993–1022.

Chechik, G. and Tishby, N. (2002). Extracting relevant structures with side information. In Becker,
S., Thrun, S., and Obermayer, K. (eds), Advances in Neural Information Processing Systems 15.
Cambridge, MA: The MIT Press, 857–864.

Chen, N., Zhu, J., Sun, F., and Xing, E. P. (2012). Large-margin predictive latent subspace learning
for multiview data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 34: 2365–2378.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research : 265–292.

Erosheva, E. A. (2003). Bayesian estimation of the Grade of Membership model. In Bernardo, J.
M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M.
(eds), Bayesian Statistics 7. New York, NY: Oxford University Press, 501–510.

Erosheva, E. A., Fienberg, S. E., and Lafferty, J. D. (2004). Mixed-membership models of scientific
publications. Proceedings of National Academy of Sciences 101 : 5220–5227.

Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene cate-
gories. In Proceedings of the 10th IEEE Computer Vision and Pattern Recognition (CVPR 2005).
San Diego, CA, USA: IEEE Computer Society, 524–531.

Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. (2010). Object detection with
discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32: 1627 – 1645.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences 101 Suppl 1: 5228–5235.



392 Handbook of Mixed Membership Models and Its Applications
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