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Abstract

Supervised topic models with a logistic
likelihood have two issues that potential-
ly limit their practical use: 1) response
variables are usually over-weighted by
document word counts; and 2) existing
variational inference methods make strict
mean-field assumptions. We address these
issues by: 1) introducing a regularization
constant to better balance the two parts
based on an optimization formulation of
Bayesian inference; and 2) developing a
simple Gibbs sampling algorithm by intro-
ducing auxiliary Polya-Gamma variables
and collapsing out Dirichlet variables. Our
augment-and-collapse sampling algorithm
has analytical forms of each conditional
distribution without making any restrict-
ing assumptions and can be easily paral-
lelized. Empirical results demonstrate sig-
nificant improvements on prediction per-
formance and time efficiency.

1 Introduction

As widely adopted in supervised latent Dirichlet
allocation (sLDA) models (Blei and McAuliffe,
2010; Wang et al., 2009), one way to improve
the predictive power of LDA is to define a like-
lihood model for the widely available document-
level response variables, in addition to the likeli-
hood model for document words. For example, the
logistic likelihood model is commonly used for bi-
nary or multinomial responses. By imposing some
priors, posterior inference is done with the Bayes’
rule. Though powerful, one issue that could limit
the use of existing logistic supervised LDA models
is that they treat the document-level response vari-
able as one additional word via a normalized like-
lihood model. Although some special treatment is
carried out on defining the likelihood of the single

response variable, it is normally of a much small-
er scale than the likelihood of the usually tens or
hundreds of words in each document. As noted
by (Halpern et al., 2012) and observed in our ex-
periments, this model imbalance could result in a
weak influence of response variables on the topic
representations and thus non-satisfactory predic-
tion performance. Another difficulty arises when
dealing with categorical response variables is that
the commonly used normal priors are no longer
conjugate to the logistic likelihood and thus lead to
hard inference problems. Existing approaches re-
ly on variational approximation techniques which
normally make strict mean-field assumptions.

To address the above issues, we present two im-
provements. First, we present a general frame-
work of Bayesian logistic supervised topic models
with a regularization parameter to better balance
response variables and words. Technically, instead
of doing standard Bayesian inference via Bayes’
rule, which requires a normalized likelihood mod-
el, we propose to do regularized Bayesian infer-
ence (Zhu et al., 2011; Zhu et al., 2013b) via solv-
ing an optimization problem, where the posterior
regularization is defined as an expectation of a l-
ogistic loss, a surrogate loss of the expected mis-
classification error; and a regularization parame-
ter is introduced to balance the surrogate classifi-
cation loss (i.e., the response log-likelihood) and
the word likelihood. The general formulation sub-
sumes standard sLDA as a special case.

Second, to solve the intractable posterior infer-
ence problem of the generalized Bayesian logis-
tic supervised topic models, we present a simple
Gibbs sampling algorithm by exploring the ideas
of data augmentation (Tanner and Wong, 1987;
van Dyk and Meng, 2001; Holmes and Held,
2006). More specifically, we extend Polson’s
method for Bayesian logistic regression (Polson
et al., 2012) to the generalized logistic supervised
topic models, which are much more challeng-



ing due to the presence of non-trivial latent vari-
ables. Technically, we introduce a set of Polya-
Gamma variables, one per document, to refor-
mulate the generalized logistic pseudo-likelihood
model (with the regularization parameter) as a s-
cale mixture, where the mixture component is con-
ditionally normal for classifier parameters. Then,
we develop a simple and efficient Gibbs sampling
algorithms with analytic conditional distribution-
s without Metropolis-Hastings accept/reject steps.
For Bayesian LDA models, we can also explore
the conjugacy of the Dirichlet-Multinomial prior-
likelihood pairs to collapse out the Dirichlet vari-
ables (i.e., topics and mixing proportions) to do
collapsed Gibbs sampling, which can have better
mixing rates (Griffiths and Steyvers, 2004). Final-
ly, our empirical results on real data sets demon-
strate significant improvements on time efficiency.
The classification performance is also significantly
improved by using appropriate regularization pa-
rameters. We also provide a parallel implementa-
tion with GraphLab (Gonzalez et al., 2012), which
shows great promise in our preliminary studies.

The paper is structured as follows. Sec. 2 intro-
duces logistic supervised topic models as a general
optimization problem. Sec. 3 presents Gibbs sam-
pling algorithms with data augmentation. Sec. 4
presents experiments. Sec. 5 concludes.

2 Logistic Supervised Topic Models

We now present the generalized Bayesian logistic
supervised topic models.

2.1 The Generalized Models
We consider binary classification with a training
set D = {(wd, yd)}Dd=1, where the response vari-
able Y takes values from the output space Y =
{0, 1}. A logistic supervised topic model consists
of two parts — an LDA model (Blei et al., 2003)
for describing the words W = {wd}Dd=1, where
wd = {wdn}Nd

n=1 denote the words within docu-
ment d, and a logistic classifier for considering the
supervising signal y = {yd}Dd=1. Below, we intro-
duce each of them in turn.

LDA: LDA is a hierarchical Bayesian model
that posits each document as an admixture of K
topics, where each topic Φk is a multinomial dis-
tribution over a V -word vocabulary. For document
d, the generating process is

1. draw a topic proportion θd ∼ Dir(α)

2. for each word n = 1, 2, . . . , Nd:

(a) draw a topic1 zdn ∼ Mult(θd)

(b) draw the word wdn ∼ Mult(Φzdn)

where Dir(·) is a Dirichlet distribution; Mult(·) is
a multinomial distribution; and Φzdn denotes the
topic selected by the non-zero entry of zdn. For
fully-Bayesian LDA, the topics are random sam-
ples from a Dirichlet prior, Φk ∼ Dir(β).

Let zd = {zdn}Nd
n=1 denote the set of topic as-

signments for document d. Let Z = {zd}Dd=1 and
Θ = {θd}Dd=1 denote all the topic assignments
and mixing proportions for the entire corpus. LDA
infers the posterior distribution p(Θ,Z,Φ|W) ∝
p0(Θ,Z,Φ)p(W|Z,Φ), where p0(Θ,Z,Φ) =(∏

d p(θd|α)
∏

n p(zdn|θd)
)∏

k p(Φk|β) is the
joint distribution defined by the model. As noticed
in (Jiang et al., 2012), the posterior distribution
by Bayes’ rule is equivalent to the solution of an
information theoretical optimization problem
min

q(Θ,Z,Φ)
KL(q(Θ,Z,Φ)∥p0(Θ,Z,Φ))−Eq[log p(W|Z,Φ)]

s.t. : q(Θ,Z,Φ) ∈ P, (1)

where KL(q||p) is the Kullback-Leibler diver-
gence from q to p and P is the space of probability
distributions.

Logistic classifier: To consider binary super-
vising information, a logistic supervised topic
model (e.g., sLDA) builds a logistic classifier
using the topic representations as input features

p(y = 1|η, z) = exp(η⊤z̄)

1 + exp(η⊤z̄)
, (2)

where z̄ is a K-vector with z̄k = 1
N

∑N
n=1 I(zkn =

1), and I(·) is an indicator function that equals to
1 if predicate holds otherwise 0. If the classifier
weights η and topic assignments z are given, the
prediction rule is
ŷ|η,z = I(p(y = 1|η, z) > 0.5) = I(η⊤z̄ > 0). (3)

Since both η and Z are hidden variables, we
propose to infer a posterior distribution q(η,Z)
that has the minimal expected log-logistic loss

R(q(η,Z)) = −
∑
d

Eq[log p(yd|η, zd)], (4)

which is a good surrogate loss for the expected
misclassification loss,

∑
d Eq[I(ŷ|η,zd ̸= yd)], of

a Gibbs classifier that randomly draws a model
η from the posterior distribution and makes pre-
dictions (McAllester, 2003; Germain et al., 2009).
In fact, this choice is motivated from the obser-
vation that logistic loss has been widely used as
a convex surrogate loss for the misclassification

1A K-binary vector with only one entry equaling to 1.



loss (Rosasco et al., 2004) in the task of fully ob-
served binary classification. Also, note that the l-
ogistic classifier and the LDA likelihood are cou-
pled by sharing the latent topic assignments z. The
strong coupling makes it possible to learn a pos-
terior distribution that can describe the observed
words well and make accurate predictions.

Regularized Bayesian Inference: To integrate
the above two components for hybrid learning, a
logistic supervised topic model solves the joint
Bayesian inference problem

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ)) + cR(q(η,Z)) (5)

s.t.: q(η,Θ,Z,Φ) ∈ P,

where L(q) = KL(q||p0(η,Θ,Z,Φ)) −
Eq[log p(W|Z,Φ)] is the objective for doing
standard Bayesian inference with the classifier
weights η; p0(η,Θ,Z,Φ) = p0(η)p0(Θ,Z,Φ);
and c is a regularization parameter balancing the
influence from response variables and words.

In general, we define the pseudo-likelihood for
the supervision information

ψ(yd|zd,η) = pc(yd|η, zd) =
{exp(η⊤z̄d)}cyd
(1 + exp(η⊤z̄d))c

, (6)

which is un-normalized if c ̸= 1. But, as we
shall see this un-normalization does not affect
our subsequent inference. Then, the generalized
inference problem (5) of logistic supervised topic
models can be written in the “standard” Bayesian
inference form (1)

min
q(η,Θ,Z,Φ)

L(q(η,Θ,Z,Φ))− Eq[logψ(y|Z,η)] (7)

s.t.: q(η,Θ,Z,Φ) ∈ P,

where ψ(y|Z,η) =
∏

d ψ(yd|zd,η). It is easy
to show that the optimum solution of problem
(5) or the equivalent problem (7) is the posterior
distribution with supervising information, i.e.,

q(η,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ψ(y|η,Z)

ϕ(y,W)
.

where ϕ(y,W) is the normalization constant to
make q a distribution. We can see that when c = 1,
the model reduces to the standard sLDA, which in
practice has the imbalance issue that the response
variable (can be viewed as one additional word) is
usually dominated by the words. This imbalance
was noticed in (Halpern et al., 2012). We will see
that c can make a big difference later.

Comparison with MedLDA: The above for-
mulation of logistic supervised topic models as
an instance of regularized Bayesian inference pro-
vides a direct comparison with the max-margin

supervised topic model (MedLDA) (Jiang et al.,
2012), which has the same form of the optimiza-
tion problems. The difference lies in the posterior
regularization, for which MedLDA uses a hinge
loss of an expected classifier while the logistic su-
pervised topic model uses an expected log-logistic
loss. Gibbs MedLDA (Zhu et al., 2013a) is an-
other max-margin model that adopts the expect-
ed hinge loss as posterior regularization. As we
shall see in the experiments, by using appropriate
regularization constants, logistic supervised topic
models achieve comparable performance as max-
margin methods. We note that the relationship be-
tween a logistic loss and a hinge loss has been
discussed extensively in various settings (Rosas-
co et al., 2004; Globerson et al., 2007). But the
presence of latent variables poses additional chal-
lenges in carrying out a formal theoretical analysis
of these surrogate losses (Lin, 2001) in the topic
model setting.

2.2 Variational Approximation Algorithms
The commonly used normal prior for η is non-
conjugate to the logistic likelihood, which makes
the posterior inference hard. Moreover, the laten-
t variables Z make the inference problem harder
than that of Bayesian logistic regression model-
s (Chen et al., 1999; Meyer and Laud, 2002; Pol-
son et al., 2012). Previous algorithms to solve
problem (5) rely on variational approximation
techniques. It is easy to show that the variation-
al method (Wang et al., 2009) is a coordinate de-
scent algorithm to solve problem (5) with the addi-
tional fully-factorized constraint q(η,Θ,Z,Φ) =
q(η)(

∏
d q(θd)

∏
n q(zdn))

∏
k q(Φk) and a vari-

ational approximation to the expectation of the
log-logistic likelihood, which is intractable to
compute directly. Note that the non-Bayesian
treatment of η as unknown parameters in (Wang
et al., 2009) results in an EM algorithm, which
still needs to make strict mean-field assumptions
together with a variational bound of the expecta-
tion of the log-logistic likelihood. In this paper, we
consider the full Bayesian treatment, which can
principally consider prior distributions and infer
the posterior covariance.

3 A Gibbs Sampling Algorithm

Now, we present a simple and efficient Gibbs sam-
pling algorithm for the generalized Bayesian lo-
gistic supervised topic models.



3.1 Formulation with Data Augmentation
Since the logistic pseudo-likelihood ψ(y|Z,η) is
not conjugate with normal priors, it is not easy
to derive the sampling algorithms directly. In-
stead, we develop our algorithms by introducing
auxiliary variables, which lead to a scale mix-
ture of Gaussian components and analytic condi-
tional distributions for automatical Bayesian in-
ference without an accept/reject ratio. Our algo-
rithm represents a first attempt to extend Polson’s
approach (Polson et al., 2012) to deal with highly
non-trivial Bayesian latent variable models. Let us
first introduce the Polya-Gamma variables.

Definition 1 (Polson et al., 2012) A random
variable X has a Polya-Gamma distribution,
denoted by X∼PG(a, b), if

X =
1

2π2

∞∑
i=1

gk
(i− 1)2/2 + b2/(4π2)

,

where a, b > 0 and each gi ∼ G(a, 1) is an inde-
pendent Gamma random variable.

Let ωd = η⊤z̄d. Then, using the ideas of data
augmentation (Tanner and Wong, 1987; Polson
et al., 2012), we can show that the generalized
pseudo-likelihood can be expressed as

ψ(yd|zd,η) =
1

2c
eκdωd

∫ ∞

0

exp
(
− λdω

2
d

2

)
p(λd|c, 0)dλd,

where κd = c(yd−1/2) and λd is a Polya-Gamma
variable with parameters a = c and b = 0. This
result indicates that the posterior distribution of
the generalized Bayesian logistic supervised topic
models, i.e., q(η,Θ,Z,Φ), can be expressed as
the marginal of a higher dimensional distribution
that includes the augmented variables λ. The
complete posterior distribution is

q(η,λ,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y,λ|Z,η)

ψ(y,W)
,

where the pseudo-joint distribution of y and λ is

ϕ(y,λ|Z,η) =
∏
d

exp
(
κdωd − λdω

2
d

2

)
p(λd|c, 0).

3.2 Inference with Collapsed Gibbs Sampling
Although we can do Gibbs sampling to infer the
complete posterior distribution q(η,λ,Θ,Z,Φ)
and thus q(η,Θ,Z,Φ) by ignoring λ, the mixing
rate would be slow due to the large sample space.
One way to effectively improve mixing rates
is to integrate out the intermediate variables
(Θ,Φ) and build a Markov chain whose equi-
librium distribution is the marginal distribution
q(η,λ,Z). We propose to use collapsed Gibbs

sampling, which has been successfully used in
LDA (Griffiths and Steyvers, 2004). For our
model, the collapsed posterior distribution is
q(η,λ,Z) ∝ p0(η)p(W,Z|α,β)ϕ(y,λ|Z,η)

= p0(η)

K∏
k=1

δ(Ck + β)

δ(β)

D∏
d=1

[δ(Cd +α)

δ(α)

× exp
(
κdωd − λdω

2
d

2

)
p(λd|c, 0)

]
,

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
, Ct

k is the number of

times the term t being assigned to topic k over the
whole corpus and Ck = {Ct

k}Vt=1; Ck
d is the num-

ber of times that terms being associated with topic
k within the d-th document and Cd = {Ck

d}Kk=1.
Then, the conditional distributions used in col-
lapsed Gibbs sampling are as follows.

For η: for the commonly used isotropic Gaus-
sian prior p0(η) =

∏
k N (ηk; 0, ν

2), we have

q(η|Z,λ) ∝ p0(η)
∏
d

exp
(
κdωd − λdω

2
d

2

)
= N (η;µ,Σ), (8)

where the posterior mean is µ = Σ(
∑

d κdz̄d) and
the covariance is Σ = ( 1

ν2
I+

∑
d λdz̄dz̄

⊤
d )

−1. We
can easily draw a sample from a K-dimensional
multivariate Gaussian distribution. The inverse
can be robustly done using Cholesky decomposi-
tion, an O(K3) procedure. Since K is normally
not large, the inversion can be done efficiently.

For Z: The conditional distribution of Z is

q(Z|η,λ) ∝
K∏

k=1

δ(Ck + β)

δ(β)

D∏
d=1

[δ(Cd +α)

δ(α)

× exp
(
κdωd − λdω

2
d

2

)]
.

By canceling common factors, we can derive the
local conditional of one variable zdn as:
q(zkdn = 1 | Z¬,η,λ, wdn = t)

∝
(Ct

k,¬n + βt)(C
k
d,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt

exp
(
γκdηk

− λd
γ2η2k + 2γ(1− γ)ηkΛ

k
dn

2

)
, (9)

whereC ·
·,¬n indicates that term n is excluded from

the corresponding document or topic; γ = 1
Nd

;
and Λk

dn = 1
Nd−1

∑
k′ ηk′C

k′
d,¬n is the discrimi-

nant function value without word n. We can see
that the first term is from the LDA model for ob-
served word counts and the second term is from
the supervising signal y.

For λ: Finally, the conditional distribution of
the augmented variables λ is

q(λd|Z,η) ∝ exp
(
− λdω

2
d

2

)
p(λd|c, 0)

= PG
(
λd; c, ωd

)
, (10)



Algorithm 1 for collapsed Gibbs sampling
1: Initialization: set λ = 1 and randomly draw
zdn from a uniform distribution.

2: for m = 1 to M do
3: draw a classifier from the distribution (8)
4: for d = 1 to D do
5: for each word n in document d do
6: draw the topic using distribution (9)
7: end for
8: draw λd from distribution (10).
9: end for

10: end for

which is a Polya-Gamma distribution. The equal-
ity has been achieved by using the construction
definition of the general PG(a, b) class through an
exponential tilting of the PG(a, 0) density (Pol-
son et al., 2012). To draw samples from the
Polya-Gamma distribution, we adopt the efficient
method2 proposed in (Polson et al., 2012), which
draws the samples through drawing samples from
the closely related exponentially tilted Jacobi dis-
tribution.

With the above conditional distributions, we can
construct a Markov chain which iteratively draws
samples of η using Eq. (8), Z using Eq. (9) and
λ using Eq. (10), with an initial condition. In our
experiments, we initially set λ = 1 and randomly
draw Z from a uniform distribution. In training,
we run the Markov chain forM iterations (i.e., the
burn-in stage), as outlined in Algorithm 1. Then,
we draw a sample η̂ as the final classifier to make
predictions on testing data. As we shall see, the
Markov chain converges to stable prediction per-
formance with a few burn-in iterations.

3.3 Prediction

To apply the classifier η̂ on testing data, we need
to infer their topic assignments. We take the ap-
proach in (Zhu et al., 2012; Jiang et al., 2012),
which uses a point estimate of topics Φ from
training data and makes prediction based on them.
Specifically, we use the MAP estimate Φ̂ to re-
place the probability distribution p(Φ). For the
Gibbs sampler, an estimate of Φ̂ using the sam-
ples is ϕ̂kt ∝ Ct

k + βt. Then, given a testing doc-
ument w, we infer its latent components z using
Φ̂ as p(zn = k|z¬n) ∝ ϕ̂kwn(C

k
¬n + αk), where

2The basic sampler was implemented in the R package
BayesLogit. We implemented the sampling algorithm in C++
together with our topic model sampler.

Ck
¬n is the times that the terms in this document w

assigned to topic k with the n-th term excluded.

4 Experiments

We present empirical results and sensitivity anal-
ysis to demonstrate the efficiency and prediction
performance3 of the generalized logistic super-
vised topic models on the 20Newsgroups (20NG)
data set, which contains about 20,000 postings
within 20 news groups. We follow the same set-
ting as in (Zhu et al., 2012) and remove a stan-
dard list of stop words for both binary and multi-
class classification. For all the experiments, we
use the standard normal prior p0(η) (i.e., ν2 = 1)
and the symmetric Dirichlet priors α = α

K1, β =
0.01×1, where 1 is a vector with all entries being
1. For each setting, we report the average perfor-
mance and the standard deviation with five ran-
domly initialized runs.

4.1 Binary classification

Following the same setting in (Lacoste-Jullien et
al., 2009; Zhu et al., 2012), the task is to distin-
guish postings of the newsgroup alt.atheism and
those of the group talk.religion.misc. The training
set contains 856 documents and the test set con-
tains 569 documents. We compare the generalized
logistic supervised LDA using Gibbs sampling
(denoted by gSLDA) with various competitors,
including the standard sLDA using variational
mean-field methods (denoted by vSLDA) (Wang
et al., 2009), the MedLDA model using varia-
tional mean-field methods (denoted by vMedL-
DA) (Zhu et al., 2012), and the MedLDA mod-
el using collapsed Gibbs sampling algorithms (de-
noted by gMedLDA) (Jiang et al., 2012). We al-
so include the unsupervised LDA using collapsed
Gibbs sampling as a baseline, denoted by gLDA.
For gLDA, we learn a binary linear SVM on its
topic representations using SVMLight (Joachims,
1999). The results of DiscLDA (Lacoste-Jullien
et al., 2009) and linear SVM on raw bag-of-words
features were reported in (Zhu et al., 2012). For
gSLDA, we compare two versions – the standard
sLDA with c = 1 and the sLDA with a well-tuned
c value. To distinguish, we denote the latter by
gSLDA+. We set c = 25 for gSLDA+, and set
α = 1 and M = 100 for both gSLDA and gSL-
DA+. As we shall see, gSLDA is insensitive to α,

3Due to space limit, the topic visualization (similar to that
of MedLDA) is deferred to a longer version.
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Figure 1: Accuracy, training time (in log-scale) and testing time on the 20NG binary data set.

c and M in a wide range.
Fig. 1 shows the performance of different meth-

ods with various numbers of topics. For accuracy,
we can draw two conclusions: 1) without making
restricting assumptions on the posterior distribu-
tions, gSLDA achieves higher accuracy than vSL-
DA that uses strict variational mean-field approxi-
mation; and 2) by using the regularization constant
c to improve the influence of supervision informa-
tion, gSLDA+ achieves much better classification
results, in fact comparable with those of MedLDA
models since they have the similar mechanism to
improve the influence of supervision by tuning a
regularization constant. The fact that gLDA+SVM
performs better than the standard gSLDA is due
to the same reason, since the SVM part of gL-
DA+SVM can well capture the supervision infor-
mation to learn a classifier for good prediction,
while standard sLDA can’t well-balance the influ-
ence of supervision. In contrast, the well-balanced
gSLDA+ model successfully outperforms the two-
stage approach, gLDA+SVM, by performing topic
discovery and prediction jointly4.

For training time, both gSLDA and gSLDA+ are
very efficient, e.g., about 2 orders of magnitudes
faster than vSLDA and about 1 order of magnitude
faster than vMedLDA. For testing time, gSLDA
and gSLDA+ are comparable with gMedLDA and
the unsupervised gLDA, but faster than the varia-
tional vMedLDA and vSLDA, especially when K
is large.

4.2 Multi-class classification

We perform multi-class classification on the 20NG
data set with all the 20 categories. For multi-
class classification, one possible extension is to
use a multinomial logistic regression model for
categorical variables Y by using topic represen-
tations z̄ as input features. However, it is non-

4The variational sLDA with a well-tuned c is significantly
better than the standard sLDA, but a bit inferior to gSLDA+.

trivial to develop a Gibbs sampling algorithm us-
ing the similar data augmentation idea, due to the
presence of latent variables and the nonlinearity
of the soft-max function. In fact, this is harder
than the multinomial Bayesian logistic regression,
which can be done via a coordinate strategy (Pol-
son et al., 2012). Here, we apply the binary gSL-
DA to do the multi-class classification, following
the “one-vs-all” strategy, which has been shown
effective (Rifkin and Klautau, 2004), to provide
some preliminary analysis. Namely, we learn 20
binary gSLDA models and aggregate their predic-
tions by taking the most likely ones as the final
predictions. We again evaluate two versions of
gSLDA – the standard gSLDA with c = 1 and
the improved gSLDA+ with a well-tuned c value.
Since gSLDA is also insensitive to α and c for the
multi-class task, we set α = 5.6 for both gSLDA
and gSLDA+, and set c = 256 for gSLDA+. The
number of burn-in is set as M = 40, which is suf-
ficiently large to get stable results, as we shall see.

Fig. 2 shows the accuracy and training time. We
can see that: 1) by using Gibbs sampling without
restricting assumptions, gSLDA performs better
than the variational vSLDA that uses strict mean-
field approximation; 2) due to the imbalance be-
tween the single supervision and a large set of
word counts, gSLDA doesn’t outperform the de-
coupled approach, gLDA+SVM; and 3) if we in-
crease the value of the regularization constant c,
supervision information can be better captured to
infer predictive topic representations, and gSL-
DA+ performs much better than gSLDA. In fac-
t, gSLDA+ is even better than the MedLDA that
uses mean-field approximation, while is compara-
ble with the MedLDA using collapsed Gibbs sam-
pling. Finally, we should note that the improve-
ment on the accuracy might be due to the differen-
t strategies on building the multi-class classifier-
s. But given the performance gain in the binary
task, we believe that the Gibbs sampling algorith-
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Figure 2: Multi-class classification.

Table 1: Split of training time over various steps.
SAMPLE λ SAMPLE η SAMPLE Z

K=20 2841.67 (65.80%) 7.70 (0.18%) 1455.25 (34.02%)
K=30 2417.95 (56.10%) 10.34 (0.24%) 1888.78 (43.66%)
K=40 2393.77 (49.00%) 14.66 (0.30%) 2476.82 (50.70%)
K=50 2161.09 (43.67%) 16.33 (0.33%) 2771.26 (56.00%)

m without factorization assumptions is the main
factor for the improved performance.

For training time, gSLDA models are about
10 times faster than variational vSLDA. Table 1
shows in detail the percentages of the training time
(see the numbers in brackets) spent at each sam-
pling step for gSLDA+. We can see that: 1) sam-
pling the global variables η is very efficient, while
sampling local variables (λ,Z) are much more ex-
pensive; and 2) sampling λ is relatively stable as
K increases, while sampling Z takes more time
as K becomes larger. But, the good news is that
our Gibbs sampling algorithm can be easily paral-
lelized to speedup the sampling of local variables,
following the similar architectures as in LDA.

A Parallel Implementation: GraphLab is a
graph-based programming framework for parallel
computing (Gonzalez et al., 2012). It provides a
high-level abstraction of parallel tasks by express-
ing data dependencies with a distributed graph.
GraphLab implements a GAS (gather, apply, scat-
ter) model, where the data required to compute a
vertex (edge) are gathered along its neighboring
components, and modification of a vertex (edge)
will trigger its adjacent components to recompute
their values. Since GAS has been successfully ap-
plied to several machine learning algorithms5 in-
cluding Gibbs sampling of LDA, we choose it as a
preliminary attempt to parallelize our Gibbs sam-
pling algorithm. A systematical investigation of
the parallel computation with various architectures
in interesting, but beyond the scope of this paper.

For our task, since there is no coupling among
the 20 binary gSLDA classifiers, we can learn
them in parallel. This suggests an efficient hybrid
multi-core/multi-machine implementation, which

5http://docs.graphlab.org/toolkits.html

can avoid the time consumption of IPC (i.e., inter-
process communication). Namely, we run our ex-
periments on a cluster with 20 nodes where each n-
ode is equipped with two 6-core CPUs (2.93GHz).
Each node is responsible for learning one binary
gSLDA classifier with a parallel implementation
on its 12-cores. For each binary gSLDA mod-
el, we construct a bipartite graph connecting train
documents with corresponding terms. The graph
works as follows: 1) the edges contain the to-
ken counts and topic assignments; 2) the vertices
contain individual topic counts and the augment-
ed variables λ; 3) the global topic counts and η
are aggregated from the vertices periodically, and
the topic assignments and λ are sampled asyn-
chronously during the GAS phases. Once start-
ed, sampling and signaling will propagate over the
graph. One thing to note is that since we can-
not directly measure the number of iterations of
an asynchronous model, here we estimate it with
the total number of topic samplings, which is again
aggregated periodically, divided by the number of
tokens. We denote the parallel models by parallel-
gSLDA (c = 1) and parallel-gSLDA+ (c = 256).
From Fig. 2 (b), we can see that the parallel gSL-
DA models are about 2 orders of magnitudes faster
than their sequential counterpart models, which is
very promising. Also, the prediction performance
is not sacrificed as we shall see in Fig. 4.

4.3 Sensitivity analysis

Burn-In: Fig. 3 shows the performance of gSL-
DA+ with different burn-in steps for binary classi-
fication. When M = 0 (see the most left points),
the models are built on random topic assignments.
We can see that the classification performance in-
creases fast and converges to the stable optimum
with about 20 burn-in steps. The training time in-
creases about linearly in general when using more
burn-in steps. Moreover, the training time increas-
es linearly as K increases. In the previous experi-
ments, we set M = 100.

Fig. 4 shows the performance of gSLDA+
and its parallel implementation (i.e., parallel-
gSLDA+) for the multi-class classification with d-
ifferent burn-in steps. We can see when the num-
ber of burn-in steps is larger than 20, the per-
formance of gSLDA+ is quite stable. Again, in
the log-log scale, since the slopes of the lines in
Fig. 4 (b) are close to the constant 1, the train-
ing time grows about linearly as the number of
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Figure 3: Performance of gSLDA+ with different
burn-in steps for binary classification. The most
left points are for the settings with no burn in.
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Figure 4: Performance of gSLDA+ and parallel-
gSLDA+ with different burn-in steps for multi-
class classification. The most left points are for
the settings with no burn in.

burn-in steps increases. Even when we use 40 or
60 burn-in steps, the training time is still compet-
itive, compared with the variational vSLDA. For
parallel-gSLDA+ using GraphLab, the training is
consistently about 2 orders of magnitudes faster.
Meanwhile, the classification performance is also
comparable with that of gSLDA+, when the num-
ber of burn-in steps is larger than 40. In the pre-
vious experiments, we have set M = 40 for both
gSLDA+ and parallel-gSLDA+.

Regularization constant c: Fig. 5 shows the
performance of gSLDA in the binary classification
task with different c values. We can see that in a
wide range, e.g., from 9 to 100, the performance
is quite stable for all the three K values. But for
the standard sLDA model, i.e., c = 1, both the
training accuracy and test accuracy are low, which
indicates that sLDA doesn’t fit the supervision da-
ta well. When c becomes larger, the training ac-
curacy gets higher, but it doesn’t seem to over-fit
and the generalization performance is stable. In
the above experiments, we set c = 25. For multi-
class classification, we have similar observations
and set c = 256 in the previous experiments.

Dirichlet prior α: Fig. 6 shows the perfor-
mance of gSLDA on the binary task with differ-
ent α values. We report two cases with c = 1 and
c = 9. We can see that the performance is quite
stable in a wide range of α values, e.g., from 0.1
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Figure 5: Performance of gSLDA for binary clas-
sification with different c values.
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Figure 6: Accuracy of gSLDA for binary classifi-
cation with different α values in two settings with
c = 1 and c = 9.

to 10. We also noted that the change of α does not
affect the training time much.

5 Conclusions and Discussions

We present two improvements to Bayesian logis-
tic supervised topic models, namely, a general for-
mulation by introducing a regularization parame-
ter to avoid model imbalance and a highly efficient
Gibbs sampling algorithm without restricting as-
sumptions on the posterior distributions by explor-
ing the idea of data augmentation. The algorithm
can also be parallelized. Empirical results for both
binary and multi-class classification demonstrate
significant improvements over the existing logistic
supervised topic models. Our preliminary results
with GraphLab have shown promise on paralleliz-
ing the Gibbs sampling algorithm.

For future work, we plan to carry out more
careful investigations, e.g., using various distribut-
ed architectures (Ahmed et al., 2012; Newman
et al., 2009; Smola and Narayanamurthy, 2010),
to make the sampling algorithm highly scalable
to deal with massive data corpora. Moreover,
the data augmentation technique can be applied
to deal with other types of response variables,
such as count data with a negative-binomial likeli-
hood (Polson et al., 2012).
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